对接(动物)
计算生物学
人工智能
计算机科学
生成语法
配体(生物化学)
生物物理学
生物
生物化学
化学
受体
医学
护理部
作者
Gabriele Corso,Bowen Jing,Hannes Stark,Regina Barzilay,Tommi Jaakkola
标识
DOI:10.1016/j.bpj.2022.11.937
摘要
Deep learning techniques have led to significant advancements in data-driven modeling of biomolecular structure, function, and interactions. We develop a diffusion-based deep generative model for blind protein-ligand docking that learns a probability distribution over ligand poses conditioned on the target protein structure. As the space of ligand poses are described by a non-Euclidean manifold, we map this manifold to the product space of the degrees of freedom (translational, rotational, and torsional) involved in docking and develop an efficient diffusion process on this space.
科研通智能强力驱动
Strongly Powered by AbleSci AI