Self-Supervised Global–Local Contrastive Learning for Fine-Grained Change Detection in VHR Images

计算机科学 初始化 判别式 人工智能 特征(语言学) 模式识别(心理学) 变更检测 特征提取 像素 特征学习 编码器 卷积神经网络 机器学习 哲学 语言学 程序设计语言 操作系统
作者
Fenlong Jiang,Maoguo Gong,Hanhong Zheng,Tongfei Liu,Mingyang Zhang,Jialu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2023.3238327
摘要

Self-supervised contrastive learning (CL) can learn high-quality feature representations that are beneficial to downstream tasks without labeled data. However, most CL methods are for image-level tasks. For the fine-grained change detection (FCD) tasks, such as change or change trend detection of some specific ground objects, it is usually necessary to perform pixel-level discriminative analysis. Therefore, feature representations learned by image-level CL may have limited effects on FCD. To address this problem, we propose a self-supervised global–local contrastive learning (GLCL) framework, which extends the instance discrimination task to the pixel level. GLCL follows the current mainstream CL paradigm and consists of four parts, including data augmentation to generate different views of the input, an encoder network for feature extraction, a global CL head, and a local CL head to perform image-level and pixel-level instance discrimination tasks, respectively. Through GLCL, features belonging to different perspectives of the same instance will be pulled closer, while features of different instances will be alienated, which can enhance the discriminativeness of feature representations from both global and local perspectives, thereby facilitating downstream FCD tasks. In addition, GLCL makes a targeted structural adaptation to FCD, i.e., the encoder network is undertaken by the common backbone networks of FCD, which can accelerate the deployment on downstream FCD tasks. Experimental results on several real datasets show that compared with other parameter initialization methods, the FCD models pretrained by GLCL can obtain better detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助和谐的访文采纳,获得10
刚刚
刚刚
奋斗的曼容完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
xinxin完成签到,获得积分10
1秒前
别说话完成签到,获得积分10
1秒前
溪水完成签到 ,获得积分10
1秒前
感性的道之完成签到 ,获得积分10
1秒前
澳澳完成签到 ,获得积分10
1秒前
胡昕跃完成签到,获得积分10
2秒前
橙酒完成签到,获得积分10
2秒前
先吃一只羊完成签到 ,获得积分10
2秒前
2秒前
zhang完成签到,获得积分10
2秒前
顺利的雁梅完成签到 ,获得积分10
3秒前
epmoct完成签到 ,获得积分10
3秒前
鉨汏闫完成签到,获得积分10
3秒前
4秒前
5秒前
xinxin发布了新的文献求助10
5秒前
热心的送终完成签到 ,获得积分10
5秒前
lll完成签到,获得积分10
5秒前
nature完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
tachang完成签到,获得积分10
6秒前
sherrymasha完成签到,获得积分10
7秒前
宁静致远完成签到,获得积分10
7秒前
7秒前
情怀应助WANGCHU采纳,获得10
7秒前
ZZ完成签到 ,获得积分10
7秒前
紫沫完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
自由度完成签到,获得积分10
8秒前
Bdcy完成签到 ,获得积分10
8秒前
小白菜发布了新的文献求助10
8秒前
蓝天发布了新的文献求助10
8秒前
WittingGU发布了新的文献求助50
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664885
求助须知:如何正确求助?哪些是违规求助? 4872325
关于积分的说明 15109450
捐赠科研通 4823740
什么是DOI,文献DOI怎么找? 2582524
邀请新用户注册赠送积分活动 1536489
关于科研通互助平台的介绍 1495074