Self-Supervised Global–Local Contrastive Learning for Fine-Grained Change Detection in VHR Images

计算机科学 初始化 判别式 人工智能 特征(语言学) 模式识别(心理学) 变更检测 特征提取 像素 特征学习 编码器 卷积神经网络 机器学习 哲学 语言学 程序设计语言 操作系统
作者
Fenlong Jiang,Maoguo Gong,Hanhong Zheng,Tongfei Liu,Mingyang Zhang,Jialu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2023.3238327
摘要

Self-supervised contrastive learning (CL) can learn high-quality feature representations that are beneficial to downstream tasks without labeled data. However, most CL methods are for image-level tasks. For the fine-grained change detection (FCD) tasks, such as change or change trend detection of some specific ground objects, it is usually necessary to perform pixel-level discriminative analysis. Therefore, feature representations learned by image-level CL may have limited effects on FCD. To address this problem, we propose a self-supervised global–local contrastive learning (GLCL) framework, which extends the instance discrimination task to the pixel level. GLCL follows the current mainstream CL paradigm and consists of four parts, including data augmentation to generate different views of the input, an encoder network for feature extraction, a global CL head, and a local CL head to perform image-level and pixel-level instance discrimination tasks, respectively. Through GLCL, features belonging to different perspectives of the same instance will be pulled closer, while features of different instances will be alienated, which can enhance the discriminativeness of feature representations from both global and local perspectives, thereby facilitating downstream FCD tasks. In addition, GLCL makes a targeted structural adaptation to FCD, i.e., the encoder network is undertaken by the common backbone networks of FCD, which can accelerate the deployment on downstream FCD tasks. Experimental results on several real datasets show that compared with other parameter initialization methods, the FCD models pretrained by GLCL can obtain better detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tyj发布了新的文献求助20
1秒前
SciGPT应助科研小飞猪采纳,获得10
2秒前
彳亍发布了新的文献求助10
2秒前
由由发布了新的文献求助10
3秒前
客官们帮帮忙完成签到,获得积分10
5秒前
5秒前
da发布了新的文献求助10
5秒前
5秒前
kylucky发布了新的文献求助10
6秒前
8秒前
10秒前
山楂发布了新的文献求助10
10秒前
欣喜靖发布了新的文献求助10
12秒前
14秒前
satuo完成签到,获得积分10
16秒前
大海发布了新的文献求助10
17秒前
17秒前
kylucky完成签到,获得积分10
17秒前
tannie完成签到 ,获得积分10
18秒前
20秒前
21秒前
obito发布了新的文献求助10
21秒前
21秒前
张小科完成签到,获得积分10
21秒前
斯文败类应助思维隋采纳,获得10
22秒前
夏蓉完成签到,获得积分10
23秒前
a_jumper完成签到,获得积分10
24秒前
zisu发布了新的文献求助10
24秒前
斯文败类应助waoller1采纳,获得10
24秒前
25秒前
香蕉觅云应助waoller1采纳,获得10
25秒前
FashionBoy应助waoller1采纳,获得10
25秒前
在水一方应助waoller1采纳,获得10
25秒前
打打应助waoller1采纳,获得10
25秒前
天天快乐应助waoller1采纳,获得10
25秒前
脑洞疼应助waoller1采纳,获得10
25秒前
小蘑菇应助waoller1采纳,获得10
25秒前
猪猪hero应助waoller1采纳,获得10
25秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144