Self-Supervised Global–Local Contrastive Learning for Fine-Grained Change Detection in VHR Images

计算机科学 初始化 判别式 人工智能 特征(语言学) 模式识别(心理学) 变更检测 特征提取 像素 特征学习 编码器 卷积神经网络 机器学习 哲学 操作系统 程序设计语言 语言学
作者
Fenlong Jiang,Maoguo Gong,Hanhong Zheng,Tongfei Liu,Mingyang Zhang,Jialu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2023.3238327
摘要

Self-supervised contrastive learning (CL) can learn high-quality feature representations that are beneficial to downstream tasks without labeled data. However, most CL methods are for image-level tasks. For the fine-grained change detection (FCD) tasks, such as change or change trend detection of some specific ground objects, it is usually necessary to perform pixel-level discriminative analysis. Therefore, feature representations learned by image-level CL may have limited effects on FCD. To address this problem, we propose a self-supervised global–local contrastive learning (GLCL) framework, which extends the instance discrimination task to the pixel level. GLCL follows the current mainstream CL paradigm and consists of four parts, including data augmentation to generate different views of the input, an encoder network for feature extraction, a global CL head, and a local CL head to perform image-level and pixel-level instance discrimination tasks, respectively. Through GLCL, features belonging to different perspectives of the same instance will be pulled closer, while features of different instances will be alienated, which can enhance the discriminativeness of feature representations from both global and local perspectives, thereby facilitating downstream FCD tasks. In addition, GLCL makes a targeted structural adaptation to FCD, i.e., the encoder network is undertaken by the common backbone networks of FCD, which can accelerate the deployment on downstream FCD tasks. Experimental results on several real datasets show that compared with other parameter initialization methods, the FCD models pretrained by GLCL can obtain better detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林一发布了新的文献求助20
1秒前
zxvcbnm完成签到,获得积分10
1秒前
晨星完成签到,获得积分10
2秒前
2秒前
顾越发布了新的文献求助10
2秒前
懵懂的尔风完成签到 ,获得积分10
4秒前
ding应助guard采纳,获得150
4秒前
5秒前
Joanne完成签到 ,获得积分10
6秒前
浮游应助瘦瘦的雨莲采纳,获得10
6秒前
7秒前
7秒前
蛙蛙完成签到 ,获得积分10
8秒前
luowenbo发布了新的文献求助10
10秒前
活力完成签到,获得积分10
11秒前
悦耳的谷芹完成签到 ,获得积分10
11秒前
12秒前
ilmiss完成签到,获得积分10
12秒前
llw发布了新的文献求助10
13秒前
YFL完成签到,获得积分10
13秒前
13秒前
kk_yang完成签到,获得积分10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
15秒前
思源应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
16秒前
wwz应助科研通管家采纳,获得10
16秒前
16秒前
Hello应助科研通管家采纳,获得10
16秒前
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
向阳发布了新的文献求助10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得20
16秒前
zcl应助科研通管家采纳,获得150
16秒前
wwz应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305794
求助须知:如何正确求助?哪些是违规求助? 4451756
关于积分的说明 13853101
捐赠科研通 4339264
什么是DOI,文献DOI怎么找? 2382461
邀请新用户注册赠送积分活动 1377460
关于科研通互助平台的介绍 1345074