已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-Supervised Global–Local Contrastive Learning for Fine-Grained Change Detection in VHR Images

计算机科学 初始化 判别式 人工智能 特征(语言学) 模式识别(心理学) 变更检测 特征提取 像素 特征学习 编码器 卷积神经网络 机器学习 哲学 操作系统 程序设计语言 语言学
作者
Fenlong Jiang,Maoguo Gong,Hanhong Zheng,Tongfei Liu,Mingyang Zhang,Jialu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2023.3238327
摘要

Self-supervised contrastive learning (CL) can learn high-quality feature representations that are beneficial to downstream tasks without labeled data. However, most CL methods are for image-level tasks. For the fine-grained change detection (FCD) tasks, such as change or change trend detection of some specific ground objects, it is usually necessary to perform pixel-level discriminative analysis. Therefore, feature representations learned by image-level CL may have limited effects on FCD. To address this problem, we propose a self-supervised global–local contrastive learning (GLCL) framework, which extends the instance discrimination task to the pixel level. GLCL follows the current mainstream CL paradigm and consists of four parts, including data augmentation to generate different views of the input, an encoder network for feature extraction, a global CL head, and a local CL head to perform image-level and pixel-level instance discrimination tasks, respectively. Through GLCL, features belonging to different perspectives of the same instance will be pulled closer, while features of different instances will be alienated, which can enhance the discriminativeness of feature representations from both global and local perspectives, thereby facilitating downstream FCD tasks. In addition, GLCL makes a targeted structural adaptation to FCD, i.e., the encoder network is undertaken by the common backbone networks of FCD, which can accelerate the deployment on downstream FCD tasks. Experimental results on several real datasets show that compared with other parameter initialization methods, the FCD models pretrained by GLCL can obtain better detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crillzlol发布了新的文献求助10
1秒前
yu发布了新的文献求助10
1秒前
1秒前
Persist完成签到 ,获得积分10
5秒前
迟大猫应助八戒的梦想采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
6秒前
NexusExplorer应助ZXG采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
VDC应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
称心文博完成签到,获得积分10
9秒前
传奇3应助hui采纳,获得10
10秒前
脑洞疼应助king采纳,获得10
12秒前
请叫我风吹麦浪应助小1采纳,获得10
12秒前
安然发布了新的文献求助10
13秒前
24秒前
24秒前
深情安青应助AIA7采纳,获得10
25秒前
华仔应助伶俐的慕山采纳,获得10
25秒前
26秒前
安然发布了新的文献求助10
27秒前
28秒前
29秒前
隐形曼青应助怕黑小白菜采纳,获得10
29秒前
意芷发布了新的文献求助10
29秒前
迷路的依波完成签到,获得积分10
31秒前
聪慧小燕发布了新的文献求助10
31秒前
32秒前
杨哈哈发布了新的文献求助10
33秒前
34秒前
34秒前
35秒前
wanci应助ZZ采纳,获得10
36秒前
37秒前
chyr发布了新的文献求助10
38秒前
hqh完成签到,获得积分10
39秒前
酱鱼发布了新的文献求助10
40秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484176
求助须知:如何正确求助?哪些是违规求助? 3073236
关于积分的说明 9130199
捐赠科研通 2764925
什么是DOI,文献DOI怎么找? 1517450
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701095