Feature dynamic alignment and refinement for infrared–visible image fusion: Translation robust fusion

计算机科学 翻译(生物学) 融合 特征(语言学) 图像融合 人工智能 计算机视觉 流离失所(心理学) 图像配准 图像(数学) 约束(计算机辅助设计) 模式识别(心理学) 数学 信使核糖核酸 几何学 哲学 基因 生物化学 语言学 化学 心理治疗师 心理学
作者
Huafeng Li,Junzhi Zhao,Jinxing Li,Zhengtao Yu,Guangming Lu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:95: 26-41 被引量:45
标识
DOI:10.1016/j.inffus.2023.02.011
摘要

Translational displacement between source images from different sensors is a general phenomenon, which will cause performance degradation on image fusion. To tackle this issue, a straightforward way is to make source images registration first. However, due to the large modality-gap between the infrared image and the visible image, it is too challenging to achieve completely registered images. In this paper, a novel registration-free fusion method is primarily proposed for infrared and visible images with translational displacement, which transforms the problem of image registration to feature alignment in an end-to-end framework. Specifically, we propose a cross-modulation strategy followed by feature dynamic alignment, so that the spatial correlation of shifts is adaptively measured and the aligned features can be dynamically extracted. A feature refinement module is additionally designed based on the local similarity, which enhances the textures related information while suppresses artifacts related information. Thanks to these strategies, our experimental results on infrared–visible images with translational displacement achieve dramatic enhancement compared with state-of-the-arts. To the best of our knowledge, this is the first work on infrared–visible image fusion without strict registration. It does break the constraint of existing image-registration based two-step strategies and provide a simple but efficient way for multi-modal image fusion. The source code will be released at https://github.com/lhf12278/RFVIF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彩色鹏煊发布了新的文献求助10
1秒前
tbdyc完成签到,获得积分10
1秒前
123完成签到,获得积分20
2秒前
3秒前
东都哈士奇完成签到,获得积分10
3秒前
3秒前
烟花应助温暖的蘑菇采纳,获得10
4秒前
4秒前
4秒前
科研通AI6应助郑郑采纳,获得10
5秒前
8秒前
8秒前
codedlock发布了新的文献求助10
8秒前
9秒前
9秒前
田様应助科研通管家采纳,获得10
9秒前
jjccaa发布了新的文献求助20
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
122319应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
丘比特应助666采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
122319应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
ccm应助科研通管家采纳,获得10
10秒前
10秒前
天王老子发布了新的文献求助10
10秒前
小青椒应助科研通管家采纳,获得30
10秒前
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
ccm应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708