亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Privacy-preserving and Efficient Decentralized Federated Learning-based Energy Theft Detector

新闻聚合器 计算机科学 数据聚合器 架空(工程) 加密 能源消耗 计算机安全 信息隐私 Paillier密码体制 方案(数学) 密码系统 钥匙(锁) 智能电网 数据建模 计算机网络 无线传感器网络 混合密码体制 工程类 数据库 数学分析 数学 电气工程 操作系统
作者
Mohamed I. Ibrahem,Mohamed Mahmoud,Mostafa M. Fouda,Basem M. ElHalawany,Waleed Alasmary
标识
DOI:10.1109/globecom48099.2022.10000881
摘要

Energy theft causes economic losses and power out-ages and disrupts energy generation and distribution of smart grids. A significant challenge is how to effectively use customers' power consumption data for energy theft detection while pre-serving security and privacy. One solution is to use federated learning (FL) to compute a global model to detect energy theft cyberattacks where detection stations train local models on their customers' power consumption data and send only the parameters of the models to an aggregator server. Nevertheless, revealing the model's parameters may still leak customers' private data by launching attacks such as membership and inference. Therefore, a secure aggregation scheme is needed to protect the models' param-eters. Furthermore, the existing privacy-preserving aggregation schemes suffer from high overhead and low model accuracy. This paper addresses these limitations by proposing a novel privacy- preserving, efficient, decentralized, aggregation scheme based on a functional encryption cryptosystem for energy theft detection in smart grids without requiring a key distribution center. Our scheme enables the detection stations to send encrypted training parameters to an aggregator, which calculates the aggregated parameters and returns the updated model parameters to the detection stations without being able to learn the parameters of the local models or the training data of the customers to preserve their privacy. Moreover, the results of our extensive experiments show that our FL-based detector can detect energy thefts accurately with low overhead because of our lightweight privacy-preserving aggregation scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风华正茂发布了新的文献求助30
5秒前
呼啦呼啦完成签到 ,获得积分10
10秒前
cc应助科研通管家采纳,获得10
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
YifanWang应助科研通管家采纳,获得10
15秒前
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
Rondab应助科研通管家采纳,获得10
16秒前
Sandy应助科研通管家采纳,获得80
16秒前
cc应助科研通管家采纳,获得10
16秒前
18秒前
27秒前
葛力发布了新的文献求助10
31秒前
风华正茂完成签到,获得积分10
35秒前
华仔应助chen采纳,获得10
51秒前
量子星尘发布了新的文献求助10
55秒前
金枪鱼子发布了新的文献求助30
56秒前
1分钟前
yznfly应助金枪鱼子采纳,获得30
1分钟前
chen发布了新的文献求助10
1分钟前
1分钟前
xx发布了新的文献求助10
1分钟前
可爱的函函应助整齐海秋采纳,获得10
1分钟前
葛力发布了新的文献求助10
1分钟前
2分钟前
2分钟前
整齐海秋发布了新的文献求助10
2分钟前
123发布了新的文献求助10
2分钟前
Sandy应助科研通管家采纳,获得10
2分钟前
Sandy应助科研通管家采纳,获得30
2分钟前
Rondab应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Sandy应助科研通管家采纳,获得80
2分钟前
Rondab应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
The one完成签到,获得积分10
2分钟前
123完成签到,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128558
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789617
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056