Artificial intelligence‐based digital scores of stromal tumour‐infiltrating lymphocytes and tumour‐associated stroma predict disease‐specific survival in triple‐negative breast cancer

三重阴性 基质 三阴性乳腺癌 乳腺癌 肿瘤科 医学 肿瘤浸润淋巴细胞 间质细胞 疾病 内科学 病理 癌症研究 癌症 免疫组织化学 免疫疗法
作者
Rawan Albusayli,J. Dinny Graham,Nirmala Pathmanathan,Muhammad Shaban,Shan E Ahmed Raza,Fayyaz Minhas,Jane E. Armes,Nasir Rajpoot
标识
DOI:10.1002/path.6061
摘要

Triple-negative breast cancer (TNBC) is known to have a relatively poor outcome with variable prognoses, raising the need for more informative risk stratification. We investigated a set of digital, artificial intelligence (AI)-based spatial tumour microenvironment (sTME) features and explored their prognostic value in TNBC. After performing tissue classification on digitised haematoxylin and eosin (H&E) slides of TNBC cases, we employed a deep learning-based algorithm to segment tissue regions into tumour, stroma, and lymphocytes in order to compute quantitative features concerning the spatial relationship of tumour with lymphocytes and stroma. The prognostic value of the digital features was explored using survival analysis with Cox proportional hazard models in a cross-validation setting on two independent international multi-centric TNBC cohorts: The Australian Breast Cancer Tissue Bank (AUBC) cohort (n = 318) and The Cancer Genome Atlas Breast Cancer (TCGA) cohort (n = 111). The proposed digital stromal tumour-infiltrating lymphocytes (Digi-sTILs) score and the digital tumour-associated stroma (Digi-TAS) score were found to carry strong prognostic value for disease-specific survival, with the Digi-sTILs and Digi-TAS scores giving C-index values of 0.65 (p = 0.0189) and 0.60 (p = 0.0437), respectively, on the TCGA cohort as a validation set. Combining the Digi-sTILs feature with the patient's positivity status for axillary lymph nodes yielded a C-index of 0.76 on unseen validation cohorts. We surmise that the proposed digital features could potentially be used for better risk stratification and management of TNBC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助慧慧采纳,获得10
刚刚
乖乖完成签到 ,获得积分10
刚刚
1秒前
星辰大海应助兴奋的觅露采纳,获得10
2秒前
斯文败类应助rzy采纳,获得10
2秒前
3秒前
5秒前
5秒前
坚强雅绿完成签到,获得积分10
6秒前
Simen完成签到,获得积分10
7秒前
8秒前
赘婿应助orezot采纳,获得10
8秒前
坚强雅绿发布了新的文献求助20
11秒前
丘比特应助kk采纳,获得10
12秒前
12秒前
13秒前
叶子完成签到,获得积分10
14秒前
上官若男应助hwezhu采纳,获得10
14秒前
科研通AI2S应助di采纳,获得10
15秒前
吃书的猪完成签到,获得积分10
17秒前
怕孤独的思山完成签到,获得积分10
19秒前
19秒前
21秒前
爱学习的小张完成签到 ,获得积分10
21秒前
开心的谷兰完成签到,获得积分10
22秒前
尹伊萍发布了新的文献求助10
23秒前
豆芽发布了新的文献求助10
23秒前
hwezhu发布了新的文献求助10
25秒前
26秒前
xl完成签到,获得积分10
26秒前
阿亮86完成签到,获得积分10
27秒前
豆芽完成签到,获得积分10
30秒前
李爱国应助醉熏的百合采纳,获得10
30秒前
GGbond发布了新的文献求助10
30秒前
34秒前
35秒前
SciGPT应助坚强雅绿采纳,获得10
36秒前
麻薯太好吃了完成签到,获得积分20
38秒前
失眠海雪完成签到,获得积分10
40秒前
LHZ发布了新的文献求助10
40秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212472
求助须知:如何正确求助?哪些是违规求助? 2861307
关于积分的说明 8128056
捐赠科研通 2527249
什么是DOI,文献DOI怎么找? 1360950
科研通“疑难数据库(出版商)”最低求助积分说明 643378
邀请新用户注册赠送积分活动 615685