Organic reaction mechanism classification using machine learning

机制(生物学) 计算机科学 人工智能 生化工程 对数 人工神经网络 机器学习 多样性(控制论) 生物系统 数学 物理 量子力学 生物 工程类 数学分析
作者
Jordi Burés,Igor Larrosa
出处
期刊:Nature [Springer Nature]
卷期号:613 (7945): 689-695 被引量:43
标识
DOI:10.1038/s41586-022-05639-4
摘要

A mechanistic understanding of catalytic organic reactions is crucial for the design of new catalysts, modes of reactivity and the development of greener and more sustainable chemical processes1-13. Kinetic analysis lies at the core of mechanistic elucidation by facilitating direct testing of mechanistic hypotheses from experimental data. Traditionally, kinetic analysis has relied on the use of initial rates14, logarithmic plots and, more recently, visual kinetic methods15-18, in combination with mathematical rate law derivations. However, the derivation of rate laws and their interpretation require numerous mathematical approximations and, as a result, they are prone to human error and are limited to reaction networks with only a few steps operating under steady state. Here we show that a deep neural network model can be trained to analyse ordinary kinetic data and automatically elucidate the corresponding mechanism class, without any additional user input. The model identifies a wide variety of classes of mechanism with outstanding accuracy, including mechanisms out of steady state such as those involving catalyst activation and deactivation steps, and performs excellently even when the kinetic data contain substantial error or only a few time points. Our results demonstrate that artificial-intelligence-guided mechanism classification is a powerful new tool that can streamline and automate mechanistic elucidation. We are making this model freely available to the community and we anticipate that this work will lead to further advances in the development of fully automated organic reaction discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
Singularity应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
Singularity应助科研通管家采纳,获得10
刚刚
1秒前
Red完成签到,获得积分10
1秒前
2秒前
繁荣的匪发布了新的文献求助20
4秒前
5秒前
香蕉觅云应助chris采纳,获得10
5秒前
深情的牛排完成签到 ,获得积分10
5秒前
兰先生发布了新的文献求助10
6秒前
7秒前
Ting222发布了新的文献求助10
9秒前
9秒前
9秒前
无辜的半蕾完成签到,获得积分20
9秒前
9秒前
11秒前
KK完成签到,获得积分10
12秒前
CodeCraft应助铁铁采纳,获得10
12秒前
13秒前
愿喜发布了新的文献求助10
13秒前
whatever应助含糊的皮卡丘采纳,获得20
14秒前
yzm788695发布了新的文献求助10
14秒前
天天快乐应助搁浅采纳,获得10
15秒前
Youth完成签到,获得积分10
15秒前
简单驳发布了新的文献求助10
15秒前
105发布了新的文献求助10
16秒前
huanfid完成签到 ,获得积分10
16秒前
16秒前
起风了发布了新的文献求助10
19秒前
19秒前
哎哟你干嘛完成签到,获得积分10
20秒前
xiaoyu完成签到,获得积分10
21秒前
琮博完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112