Organic reaction mechanism classification using machine learning

机制(生物学) 计算机科学 人工智能 生化工程 对数 人工神经网络 机器学习 多样性(控制论) 生物系统 数学 物理 量子力学 工程类 数学分析 生物
作者
Jordi Burés,Igor Larrosa
出处
期刊:Nature [Nature Portfolio]
卷期号:613 (7945): 689-695 被引量:76
标识
DOI:10.1038/s41586-022-05639-4
摘要

A mechanistic understanding of catalytic organic reactions is crucial for the design of new catalysts, modes of reactivity and the development of greener and more sustainable chemical processes1-13. Kinetic analysis lies at the core of mechanistic elucidation by facilitating direct testing of mechanistic hypotheses from experimental data. Traditionally, kinetic analysis has relied on the use of initial rates14, logarithmic plots and, more recently, visual kinetic methods15-18, in combination with mathematical rate law derivations. However, the derivation of rate laws and their interpretation require numerous mathematical approximations and, as a result, they are prone to human error and are limited to reaction networks with only a few steps operating under steady state. Here we show that a deep neural network model can be trained to analyse ordinary kinetic data and automatically elucidate the corresponding mechanism class, without any additional user input. The model identifies a wide variety of classes of mechanism with outstanding accuracy, including mechanisms out of steady state such as those involving catalyst activation and deactivation steps, and performs excellently even when the kinetic data contain substantial error or only a few time points. Our results demonstrate that artificial-intelligence-guided mechanism classification is a powerful new tool that can streamline and automate mechanistic elucidation. We are making this model freely available to the community and we anticipate that this work will lead to further advances in the development of fully automated organic reaction discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小琦琦发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
007完成签到,获得积分10
2秒前
教育厮完成签到,获得积分10
2秒前
ys完成签到,获得积分10
2秒前
2秒前
2秒前
烟花应助瓜兮兮CYY采纳,获得10
3秒前
朴实涵菡发布了新的文献求助10
5秒前
1111111111111发布了新的文献求助10
5秒前
岁大爷发布了新的文献求助10
5秒前
轻松小之发布了新的文献求助10
7秒前
7秒前
领导范儿应助健忘症采纳,获得10
7秒前
zzll发布了新的文献求助10
7秒前
壮观的翠芙完成签到,获得积分10
8秒前
顾矜应助皮崇知采纳,获得10
8秒前
9秒前
10秒前
小琦琦完成签到,获得积分10
10秒前
11秒前
凉薄少年应助budingman采纳,获得20
12秒前
ailemonmint发布了新的文献求助10
12秒前
无花果应助朴实涵菡采纳,获得10
13秒前
13秒前
13秒前
14秒前
十六发布了新的文献求助10
14秒前
啥也不懂发布了新的文献求助10
14秒前
冰柠檬发布了新的文献求助10
15秒前
苹果白凝完成签到,获得积分10
15秒前
无花果应助清_采纳,获得10
15秒前
潇洒完成签到,获得积分10
16秒前
飘逸小懒猪关注了科研通微信公众号
16秒前
好名字发布了新的文献求助10
17秒前
18秒前
皮崇知发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420