Organic reaction mechanism classification using machine learning

机制(生物学) 计算机科学 人工智能 生化工程 对数 人工神经网络 机器学习 多样性(控制论) 生物系统 数学 物理 量子力学 工程类 数学分析 生物
作者
Jordi Burés,Igor Larrosa
出处
期刊:Nature [Nature Portfolio]
卷期号:613 (7945): 689-695 被引量:60
标识
DOI:10.1038/s41586-022-05639-4
摘要

A mechanistic understanding of catalytic organic reactions is crucial for the design of new catalysts, modes of reactivity and the development of greener and more sustainable chemical processes1-13. Kinetic analysis lies at the core of mechanistic elucidation by facilitating direct testing of mechanistic hypotheses from experimental data. Traditionally, kinetic analysis has relied on the use of initial rates14, logarithmic plots and, more recently, visual kinetic methods15-18, in combination with mathematical rate law derivations. However, the derivation of rate laws and their interpretation require numerous mathematical approximations and, as a result, they are prone to human error and are limited to reaction networks with only a few steps operating under steady state. Here we show that a deep neural network model can be trained to analyse ordinary kinetic data and automatically elucidate the corresponding mechanism class, without any additional user input. The model identifies a wide variety of classes of mechanism with outstanding accuracy, including mechanisms out of steady state such as those involving catalyst activation and deactivation steps, and performs excellently even when the kinetic data contain substantial error or only a few time points. Our results demonstrate that artificial-intelligence-guided mechanism classification is a powerful new tool that can streamline and automate mechanistic elucidation. We are making this model freely available to the community and we anticipate that this work will lead to further advances in the development of fully automated organic reaction discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的妙梦完成签到 ,获得积分20
3秒前
3秒前
lilian发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
4秒前
Wizard发布了新的文献求助10
4秒前
6秒前
彭于晏应助b15966013195采纳,获得10
7秒前
JamesPei应助炙热的萤采纳,获得10
8秒前
曹小曹完成签到,获得积分10
10秒前
我是老大应助Wizard采纳,获得30
12秒前
Hello应助Junooo采纳,获得10
12秒前
打屁飞发布了新的文献求助10
15秒前
大模型应助哈哈采纳,获得10
15秒前
凊嗏淡墨完成签到,获得积分10
16秒前
wanci应助xm采纳,获得10
18秒前
思源应助TIWOSS采纳,获得10
18秒前
科研美少女完成签到 ,获得积分10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得30
21秒前
田様应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
21秒前
22秒前
23秒前
lilian完成签到,获得积分10
25秒前
25秒前
25秒前
26秒前
27秒前
27秒前
27秒前
欧阳万仇发布了新的文献求助10
28秒前
打屁飞完成签到,获得积分10
28秒前
文献完成签到 ,获得积分10
29秒前
xiu发布了新的文献求助10
30秒前
xm发布了新的文献求助10
30秒前
Judith完成签到,获得积分10
30秒前
zz发布了新的文献求助10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741430
求助须知:如何正确求助?哪些是违规求助? 3284094
关于积分的说明 10038212
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646852
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478