Organic reaction mechanism classification using machine learning

机制(生物学) 计算机科学 人工智能 生化工程 对数 人工神经网络 机器学习 多样性(控制论) 生物系统 数学 物理 量子力学 工程类 数学分析 生物
作者
Jordi Burés,Igor Larrosa
出处
期刊:Nature [Springer Nature]
卷期号:613 (7945): 689-695 被引量:105
标识
DOI:10.1038/s41586-022-05639-4
摘要

A mechanistic understanding of catalytic organic reactions is crucial for the design of new catalysts, modes of reactivity and the development of greener and more sustainable chemical processes1-13. Kinetic analysis lies at the core of mechanistic elucidation by facilitating direct testing of mechanistic hypotheses from experimental data. Traditionally, kinetic analysis has relied on the use of initial rates14, logarithmic plots and, more recently, visual kinetic methods15-18, in combination with mathematical rate law derivations. However, the derivation of rate laws and their interpretation require numerous mathematical approximations and, as a result, they are prone to human error and are limited to reaction networks with only a few steps operating under steady state. Here we show that a deep neural network model can be trained to analyse ordinary kinetic data and automatically elucidate the corresponding mechanism class, without any additional user input. The model identifies a wide variety of classes of mechanism with outstanding accuracy, including mechanisms out of steady state such as those involving catalyst activation and deactivation steps, and performs excellently even when the kinetic data contain substantial error or only a few time points. Our results demonstrate that artificial-intelligence-guided mechanism classification is a powerful new tool that can streamline and automate mechanistic elucidation. We are making this model freely available to the community and we anticipate that this work will lead to further advances in the development of fully automated organic reaction discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助老迟到的芹菜采纳,获得10
刚刚
甜甜谷波发布了新的文献求助10
1秒前
研友_VZG7GZ应助繁荣的怀蕊采纳,获得10
1秒前
情怀应助gan采纳,获得10
1秒前
2秒前
轨迹应助corazon采纳,获得30
2秒前
3秒前
4秒前
5秒前
5秒前
6秒前
脑洞疼应助欢子12321采纳,获得10
7秒前
斯文败类应助蓝天采纳,获得10
7秒前
wxyshare应助蓝天采纳,获得10
7秒前
大个应助蓝天采纳,获得10
7秒前
天天快乐应助蓝天采纳,获得10
8秒前
星辰大海应助蓝天采纳,获得10
8秒前
科研通AI2S应助蓝天采纳,获得10
8秒前
南乔发布了新的文献求助10
8秒前
lafe123456完成签到,获得积分10
8秒前
星辰大海应助蓝天采纳,获得10
8秒前
石烁发布了新的文献求助10
8秒前
小蘑菇应助蓝天采纳,获得10
8秒前
阿兰发布了新的文献求助10
8秒前
肖敏完成签到,获得积分10
8秒前
刘大白完成签到,获得积分10
9秒前
DouBo发布了新的文献求助10
9秒前
LDDLleor完成签到,获得积分10
10秒前
小于发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
肖敏发布了新的文献求助10
12秒前
传奇3应助yy采纳,获得10
14秒前
科研通AI2S应助蓝天采纳,获得10
15秒前
星辰大海应助蓝天采纳,获得10
15秒前
斯文败类应助蓝天采纳,获得10
15秒前
不懈奋进应助蓝天采纳,获得30
15秒前
嘿嘿应助蓝天采纳,获得10
15秒前
15秒前
石烁完成签到,获得积分10
15秒前
JamesPei应助蓝天采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768