Deep Learning–Based Recurrent Delirium Prediction in Critically Ill Patients

谵妄 医学 病危 危重病 重症监护医学
作者
Filipe R. Lucini,Henry T. Stelfox,Joon Lee
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:51 (4): 492-502 被引量:10
标识
DOI:10.1097/ccm.0000000000005789
摘要

OBJECTIVES: To predict impending delirium in ICU patients using recurrent deep learning. DESIGN: Retrospective cohort study. SETTING: Fifteen medical-surgical ICUs across Alberta, Canada, between January 1, 2014, and January 24, 2020. PATIENTS: Forty-three thousand five hundred ten ICU admissions from 38,426 patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We used ICU and administrative health data to train deep learning models to predict delirium episodes in the next two 12-hour periods (0–12 and 12–24 hr), starting at 24 hours after ICU admission, and to generate new predictions every 12 hours. We used a comprehensive set of 3,643 features, capturing patient history, early ICU admission information (first 24 hr), and the temporal dynamics of various clinical variables throughout the ICU admission. Our deep learning architecture consisted of a feature embedding, a recurrent, and a prediction module. Our best model based on gated recurrent units yielded a sensitivity of 0.810, a specificity of 0.848, a precision (positive predictive value) of 0.704, and an area under the receiver operating characteristic curve (AUROC) of 0.909 in the hold-out test set for the 0–12-hour prediction horizon. For the 12–24-hour prediction horizon, the same model achieved a sensitivity of 0.791, a specificity of 0.807, a precision of 0.637, and an AUROC of 0.895 in the test set. CONCLUSIONS: Our delirium prediction model achieved strong performance by applying deep learning to a dataset that is at least one order of magnitude larger than those used in previous studies. Another novel aspect of our study is the temporal nature of our features and predictions. Our model enables accurate prediction of impending delirium in the ICU, which can potentially lead to early intervention, more efficient allocation of ICU resources, and improved patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
FadeSv完成签到,获得积分10
1秒前
sulin关注了科研通微信公众号
2秒前
NIHAO发布了新的文献求助10
2秒前
Chris发布了新的文献求助10
3秒前
不舍天真发布了新的文献求助10
3秒前
3秒前
酷波er应助熊猫采纳,获得10
3秒前
年轻迪奥发布了新的文献求助10
5秒前
5秒前
顾矜应助王艺霖采纳,获得10
5秒前
NI发布了新的文献求助10
6秒前
FIREWORK完成签到,获得积分10
6秒前
lwb完成签到,获得积分10
7秒前
7秒前
小洋关注了科研通微信公众号
7秒前
搜集达人应助LBQ采纳,获得10
8秒前
求知的周发布了新的文献求助30
12秒前
12秒前
彩色耳机完成签到,获得积分10
12秒前
平常兰发布了新的文献求助10
13秒前
13秒前
麦地娜发布了新的文献求助10
14秒前
15秒前
烟花应助害羞的天真采纳,获得10
15秒前
EliGolden完成签到,获得积分10
16秒前
义气的翅膀完成签到,获得积分10
17秒前
17秒前
AAA房地产小王完成签到,获得积分10
17秒前
17秒前
情情晴情情完成签到,获得积分10
18秒前
迷路雨寒应助张瑶采纳,获得100
18秒前
cccc发布了新的文献求助10
19秒前
温暖发布了新的文献求助10
19秒前
Lucas应助浅尝离白采纳,获得10
20秒前
20秒前
所所应助vera采纳,获得10
20秒前
深情安青应助浅尝离白采纳,获得30
20秒前
英俊的铭应助浅尝离白采纳,获得10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049