Deep Learning–Based Recurrent Delirium Prediction in Critically Ill Patients

谵妄 医学 病危 危重病 重症监护医学
作者
Filipe R. Lucini,Henry T. Stelfox,Joon Lee
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:51 (4): 492-502 被引量:10
标识
DOI:10.1097/ccm.0000000000005789
摘要

OBJECTIVES: To predict impending delirium in ICU patients using recurrent deep learning. DESIGN: Retrospective cohort study. SETTING: Fifteen medical-surgical ICUs across Alberta, Canada, between January 1, 2014, and January 24, 2020. PATIENTS: Forty-three thousand five hundred ten ICU admissions from 38,426 patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We used ICU and administrative health data to train deep learning models to predict delirium episodes in the next two 12-hour periods (0–12 and 12–24 hr), starting at 24 hours after ICU admission, and to generate new predictions every 12 hours. We used a comprehensive set of 3,643 features, capturing patient history, early ICU admission information (first 24 hr), and the temporal dynamics of various clinical variables throughout the ICU admission. Our deep learning architecture consisted of a feature embedding, a recurrent, and a prediction module. Our best model based on gated recurrent units yielded a sensitivity of 0.810, a specificity of 0.848, a precision (positive predictive value) of 0.704, and an area under the receiver operating characteristic curve (AUROC) of 0.909 in the hold-out test set for the 0–12-hour prediction horizon. For the 12–24-hour prediction horizon, the same model achieved a sensitivity of 0.791, a specificity of 0.807, a precision of 0.637, and an AUROC of 0.895 in the test set. CONCLUSIONS: Our delirium prediction model achieved strong performance by applying deep learning to a dataset that is at least one order of magnitude larger than those used in previous studies. Another novel aspect of our study is the temporal nature of our features and predictions. Our model enables accurate prediction of impending delirium in the ICU, which can potentially lead to early intervention, more efficient allocation of ICU resources, and improved patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千俞发布了新的文献求助10
1秒前
七因完成签到,获得积分10
3秒前
拿捏叉踢歪完成签到 ,获得积分10
3秒前
yangyu0zi完成签到,获得积分20
3秒前
852应助鱼木采纳,获得30
3秒前
3秒前
koko发布了新的文献求助30
3秒前
4秒前
密林小叶子完成签到,获得积分10
4秒前
动听的凡白完成签到 ,获得积分10
5秒前
6秒前
幼儿发布了新的文献求助10
6秒前
ding应助球球采纳,获得10
6秒前
7秒前
充电宝应助Vanessa采纳,获得10
7秒前
科研通AI6应助陈勇杰采纳,获得10
7秒前
拿捏叉踢歪关注了科研通微信公众号
8秒前
9秒前
9秒前
超级宸发布了新的文献求助10
9秒前
orixero应助zoey采纳,获得10
10秒前
BBQ发布了新的文献求助10
10秒前
10秒前
10秒前
如常发布了新的文献求助10
11秒前
搜集达人应助yangyu0zi采纳,获得10
12秒前
Cheng完成签到 ,获得积分10
12秒前
sssssnape发布了新的文献求助10
12秒前
12秒前
12秒前
英吉利25发布了新的文献求助10
13秒前
13秒前
深情念烟发布了新的文献求助10
13秒前
13秒前
情怀应助风花雪月采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
充电宝应助研友_LMBAXn采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061583
求助须知:如何正确求助?哪些是违规求助? 4285608
关于积分的说明 13355044
捐赠科研通 4103396
什么是DOI,文献DOI怎么找? 2246696
邀请新用户注册赠送积分活动 1252432
关于科研通互助平台的介绍 1183294