Deep Learning–Based Recurrent Delirium Prediction in Critically Ill Patients

谵妄 医学 病危 危重病 重症监护医学
作者
Filipe R. Lucini,Henry T. Stelfox,Joon Lee
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:51 (4): 492-502 被引量:6
标识
DOI:10.1097/ccm.0000000000005789
摘要

OBJECTIVES: To predict impending delirium in ICU patients using recurrent deep learning. DESIGN: Retrospective cohort study. SETTING: Fifteen medical-surgical ICUs across Alberta, Canada, between January 1, 2014, and January 24, 2020. PATIENTS: Forty-three thousand five hundred ten ICU admissions from 38,426 patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We used ICU and administrative health data to train deep learning models to predict delirium episodes in the next two 12-hour periods (0–12 and 12–24 hr), starting at 24 hours after ICU admission, and to generate new predictions every 12 hours. We used a comprehensive set of 3,643 features, capturing patient history, early ICU admission information (first 24 hr), and the temporal dynamics of various clinical variables throughout the ICU admission. Our deep learning architecture consisted of a feature embedding, a recurrent, and a prediction module. Our best model based on gated recurrent units yielded a sensitivity of 0.810, a specificity of 0.848, a precision (positive predictive value) of 0.704, and an area under the receiver operating characteristic curve (AUROC) of 0.909 in the hold-out test set for the 0–12-hour prediction horizon. For the 12–24-hour prediction horizon, the same model achieved a sensitivity of 0.791, a specificity of 0.807, a precision of 0.637, and an AUROC of 0.895 in the test set. CONCLUSIONS: Our delirium prediction model achieved strong performance by applying deep learning to a dataset that is at least one order of magnitude larger than those used in previous studies. Another novel aspect of our study is the temporal nature of our features and predictions. Our model enables accurate prediction of impending delirium in the ICU, which can potentially lead to early intervention, more efficient allocation of ICU resources, and improved patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴晨曦完成签到,获得积分10
刚刚
鹿仙完成签到,获得积分10
2秒前
潇洒的奇异果完成签到,获得积分10
2秒前
冷傲天川完成签到,获得积分10
3秒前
明理的小刺猬完成签到,获得积分10
3秒前
慕青应助enh采纳,获得10
3秒前
通通完成签到,获得积分10
4秒前
李健的粉丝团团长应助Fiee采纳,获得10
4秒前
苏素完成签到,获得积分10
5秒前
5秒前
djiwisksk66应助岳麓山老农采纳,获得10
6秒前
迷你的秋双完成签到,获得积分20
6秒前
6秒前
7秒前
兴奋的青筠完成签到,获得积分20
8秒前
8秒前
笑点低凌蝶完成签到,获得积分10
8秒前
8秒前
9秒前
折光应助宁宁采纳,获得10
9秒前
tramp应助失眠班采纳,获得10
9秒前
9秒前
9秒前
扥会发布了新的文献求助30
10秒前
ddli发布了新的文献求助10
10秒前
时光发布了新的文献求助10
10秒前
10秒前
11秒前
JC325T发布了新的文献求助30
11秒前
11秒前
Aspirin完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
小二郎应助27采纳,获得10
12秒前
Jasper应助昵昵昵昵呀采纳,获得10
12秒前
Zhang发布了新的文献求助10
12秒前
12秒前
胖大海发布了新的文献求助10
12秒前
笑场完成签到,获得积分10
12秒前
李健应助123456采纳,获得10
13秒前
shao发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110