Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images

乳腺癌 人工智能 计算机科学 特征提取 分割 阶段(地层学) 模式识别(心理学) 医学 机器学习 癌症 内科学 生物 古生物学
作者
Zhi Huang,Wei Shao,Zhi Han,Ahmad Mahmoud Alkashash,Carlo De la Sancha,Anil V. Parwani,Hiroaki Nitta,Yanjun Hou,Tongxin Wang,Paul Salama,Maher Rizkalla,Jie Zhang,Kun Huang,Zaibo Li
出处
期刊:npj precision oncology [Nature Portfolio]
卷期号:7 (1) 被引量:37
标识
DOI:10.1038/s41698-023-00352-5
摘要

Advances in computational algorithms and tools have made the prediction of cancer patient outcomes using computational pathology feasible. However, predicting clinical outcomes from pre-treatment histopathologic images remains a challenging task, limited by the poor understanding of tumor immune micro-environments. In this study, an automatic, accurate, comprehensive, interpretable, and reproducible whole slide image (WSI) feature extraction pipeline known as, IMage-based Pathological REgistration and Segmentation Statistics (IMPRESS), is described. We used both H&E and multiplex IHC (PD-L1, CD8+, and CD163+) images, investigated whether artificial intelligence (AI)-based algorithms using automatic feature extraction methods can predict neoadjuvant chemotherapy (NAC) outcomes in HER2-positive (HER2+) and triple-negative breast cancer (TNBC) patients. Features are derived from tumor immune micro-environment and clinical data and used to train machine learning models to accurately predict the response to NAC in breast cancer patients (HER2+ AUC = 0.8975; TNBC AUC = 0.7674). The results demonstrate that this method outperforms the results trained from features that were manually generated by pathologists. The developed image features and algorithms were further externally validated by independent cohorts, yielding encouraging results, especially for the HER2+ subtype.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pxy发布了新的文献求助10
刚刚
潇洒飞丹发布了新的文献求助10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
LaTeXer应助科研通管家采纳,获得200
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
思源应助琳琳采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
大气乐天完成签到,获得积分10
3秒前
整齐芷文完成签到,获得积分10
3秒前
3秒前
难过的一一完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
淡淡夕阳发布了新的文献求助10
7秒前
7秒前
8秒前
希望天下0贩的0应助lxl1996采纳,获得10
9秒前
Yukaze发布了新的文献求助10
9秒前
深情安青应助ww采纳,获得10
9秒前
lf-leo完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
开放友灵发布了新的文献求助30
13秒前
在水一方应助家伟采纳,获得10
14秒前
yuxiaobolab发布了新的文献求助10
14秒前
Chloe应助牛牛眉目采纳,获得10
14秒前
15秒前
15秒前
传奇3应助Yukaze采纳,获得10
15秒前
852应助WANGCHU采纳,获得10
16秒前
柠檬完成签到,获得积分10
16秒前
云栖完成签到,获得积分10
16秒前
汉堡包应助精明的期待采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093