On validity, physical meaning, mechanism insights and regression of adsorption kinetic models

非线性回归 动能 吸附 意义(存在) 扩散 回归分析 非线性系统 计量经济学 回归 工作(物理) 化学 统计物理学 热力学 计算机科学 数学 统计 物理化学 心理学 物理 心理治疗师 量子力学
作者
João P. Vareda
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:376: 121416-121416 被引量:89
标识
DOI:10.1016/j.molliq.2023.121416
摘要

The study of adsorption kinetics is ubiquitous when reporting new adsorbent materials in the literature. The information these tests provide are no doubt valuable, but the conclusions drawn from adsorption kinetic models are many times contradictory between papers. In this work, the validity and meaning of common kinetic models are reviewed from literature dealing with their mathematical development, and are discussed. It is found that the most common models, the pseudo second order and pseudo first order models, have the ability to fit to kinetic data originating from systems limited by the surface reaction and by diffusion. Thus, these models are not associated with just one adsorption mechanism and further precautions when analyzing the data should be taken. Other less common models are also discussed, as they can be used to gain clearer insights into the rate limiting step. Another important topic discussed is the type of regression used. Linear regression has a bias toward the pseudo second order model and the estimated parameters can be very bad, which is particularly true for the pseudo-first order model. Thus, the wrong kinetic model is more easily chosen. The benefits of employing nonlinear regression and criteria for model selection are elaborated upon, using case studies reporting the adsorption of different solutes as examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pcx完成签到,获得积分10
刚刚
phd完成签到,获得积分10
1秒前
1秒前
曹志毅完成签到,获得积分10
1秒前
mito发布了新的文献求助10
2秒前
无悔呀发布了新的文献求助10
2秒前
3秒前
君君发布了新的文献求助10
3秒前
Yang完成签到,获得积分10
4秒前
风雨完成签到,获得积分10
4秒前
4秒前
5秒前
彭于晏应助小西采纳,获得30
5秒前
可爱的函函应助布布采纳,获得10
6秒前
7秒前
轩辕德地发布了新的文献求助10
7秒前
nine发布了新的文献求助30
7秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
8秒前
JamesPei应助小敦采纳,获得10
8秒前
今非发布了新的文献求助10
8秒前
李健的小迷弟应助通~采纳,获得30
8秒前
8秒前
8秒前
fanfan44390发布了新的文献求助10
8秒前
Zhang完成签到,获得积分10
9秒前
小二郎应助小田采纳,获得10
10秒前
10秒前
隐形曼青应助liike采纳,获得10
10秒前
phd发布了新的文献求助10
10秒前
10秒前
dingdong发布了新的文献求助30
10秒前
Orange应助清秀的语山采纳,获得50
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
11秒前
无花果应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
11秒前
大李包完成签到,获得积分10
11秒前
思源应助费城青年采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794