On validity, physical meaning, mechanism insights and regression of adsorption kinetic models

非线性回归 动能 吸附 意义(存在) 扩散 回归分析 非线性系统 计量经济学 回归 工作(物理) 化学 统计物理学 热力学 计算机科学 数学 统计 物理化学 心理学 物理 量子力学 心理治疗师
作者
João P. Vareda
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:376: 121416-121416 被引量:89
标识
DOI:10.1016/j.molliq.2023.121416
摘要

The study of adsorption kinetics is ubiquitous when reporting new adsorbent materials in the literature. The information these tests provide are no doubt valuable, but the conclusions drawn from adsorption kinetic models are many times contradictory between papers. In this work, the validity and meaning of common kinetic models are reviewed from literature dealing with their mathematical development, and are discussed. It is found that the most common models, the pseudo second order and pseudo first order models, have the ability to fit to kinetic data originating from systems limited by the surface reaction and by diffusion. Thus, these models are not associated with just one adsorption mechanism and further precautions when analyzing the data should be taken. Other less common models are also discussed, as they can be used to gain clearer insights into the rate limiting step. Another important topic discussed is the type of regression used. Linear regression has a bias toward the pseudo second order model and the estimated parameters can be very bad, which is particularly true for the pseudo-first order model. Thus, the wrong kinetic model is more easily chosen. The benefits of employing nonlinear regression and criteria for model selection are elaborated upon, using case studies reporting the adsorption of different solutes as examples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助LeeFY采纳,获得10
刚刚
希望天下0贩的0应助hhh采纳,获得10
刚刚
yang完成签到 ,获得积分10
刚刚
斯文败类应助諵来北往采纳,获得10
1秒前
桐桐应助celine采纳,获得10
1秒前
盲点完成签到,获得积分10
1秒前
2秒前
欢喜的火龙果完成签到,获得积分10
2秒前
MX120251336发布了新的文献求助10
2秒前
玩命的语蝶完成签到,获得积分10
3秒前
完美世界应助Yoo.采纳,获得10
3秒前
3秒前
NexusExplorer应助FlipFlops采纳,获得10
4秒前
负责蜜蜂发布了新的文献求助10
4秒前
HOAN应助踏雾采纳,获得50
4秒前
4秒前
hahahah发布了新的文献求助20
5秒前
5秒前
我很忙完成签到 ,获得积分10
5秒前
5秒前
FashionBoy应助山鸡采纳,获得10
6秒前
ww发布了新的文献求助10
6秒前
胡涂涂发布了新的文献求助10
6秒前
sunyanghu369发布了新的文献求助10
7秒前
7秒前
8秒前
彩虹小马完成签到,获得积分10
8秒前
9秒前
田様应助热心的易烟采纳,获得10
9秒前
欢呼的烙完成签到,获得积分10
9秒前
wanci应助研友_LjDyNZ采纳,获得20
9秒前
刘佳恬发布了新的文献求助10
10秒前
小何完成签到 ,获得积分10
10秒前
Owen应助研友_LpQ3rn采纳,获得30
10秒前
10秒前
巴拉巴拉完成签到 ,获得积分10
10秒前
gyh发布了新的文献求助10
10秒前
阔达海雪完成签到,获得积分10
11秒前
lin完成签到 ,获得积分10
11秒前
xiakui完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041