Classification of Stream, Hyperconcentrated, and Debris Flow Using Dimensional Analysis and Machine Learning

高含沙水流 泥石流 地表径流 碎片 山崩 大规模浪费 地质学 水文学(农业) 岩土工程 地貌学 泥沙输移 推移质 沉积物 海洋学 生态学 生物
作者
Junhan Du,Gordon G. D. Zhou,Hui Tang,Jens M. Turowski,Kahlil F. E. Cui
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (2) 被引量:3
标识
DOI:10.1029/2022wr033242
摘要

Abstract Extreme rainfall events in mountainous environments usually induce significant sediment runoff or mass movements—debris flows, hyperconcentrated flows and stream flows—that pose substantial threats to human life and infrastructure. However, understanding of the sediment transport mechanisms that control these torrent processes remains incomplete due to the lack of comprehensive field data. This study uses a unique field data set to investigate the characteristics of the transport mechanisms of different channelized sediment‐laden flows. Results confirm that sediments in hyperconcentrated flows and stream flows are mainly supported by viscous shear and turbulent stresses, while grain collisional stresses dominate debris‐flow dynamics. Lahars, a unique sediment transport process in volcanic environments, exhibit a wide range of transport mechanisms similar to those in the three different flow types. Furthermore, the Einstein number (dimensionless sediment flux) exhibits a power‐law relationship with the dimensionless flow discharge. Machine learning is then used to draw boundaries in the Einstein number‐dimensionless discharge scheme to classify one flow from the other and thereby aid in developing appropriate hazard assessments for torrential processes in mountainous and volcanic environments based on measurable hydrologic and geomorphic parameters. The proposed scheme provides a universal criterion that improves existing classification methods that depend solely on the sediment concentration for quantifying the runoff‐to‐debris flow transition relevant to landscape evolution studies and hazard assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
斯文败类应助water采纳,获得10
1秒前
平淡惋清完成签到,获得积分10
2秒前
摆烂的鲲完成签到,获得积分10
2秒前
bing完成签到,获得积分20
2秒前
lyan完成签到,获得积分10
2秒前
赘婿应助旺旺仔采纳,获得10
2秒前
Accept完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
a'mao'men发布了新的文献求助10
3秒前
4秒前
纪忆寒完成签到,获得积分10
4秒前
pw完成签到 ,获得积分10
4秒前
荀煜祺发布了新的文献求助10
4秒前
4秒前
5秒前
DAISHU完成签到,获得积分10
5秒前
黄金天下完成签到,获得积分10
5秒前
5秒前
5秒前
WJ发布了新的文献求助10
6秒前
Man关注了科研通微信公众号
6秒前
周一斩完成签到,获得积分10
7秒前
HMONEY应助清脆的以松采纳,获得10
7秒前
bing发布了新的文献求助30
8秒前
命运的X号发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
taster发布了新的文献求助30
9秒前
9秒前
小豆豆发布了新的文献求助10
9秒前
wo发布了新的文献求助10
9秒前
桐桐应助外向愫采纳,获得10
10秒前
L_完成签到,获得积分10
11秒前
関电脑完成签到,获得积分10
11秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234917
求助须知:如何正确求助?哪些是违规求助? 2881181
关于积分的说明 8218944
捐赠科研通 2548871
什么是DOI,文献DOI怎么找? 1377968
科研通“疑难数据库(出版商)”最低求助积分说明 648095
邀请新用户注册赠送积分活动 623563