Classification of Stream, Hyperconcentrated, and Debris Flow Using Dimensional Analysis and Machine Learning

高含沙水流 泥石流 地表径流 碎片 山崩 大规模浪费 地质学 水文学(农业) 岩土工程 地貌学 泥沙输移 推移质 沉积物 生态学 生物 海洋学
作者
Junhan Du,Gordon G. D. Zhou,Hui Tang,Jens M. Turowski,Kahlil F. E. Cui
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (2) 被引量:3
标识
DOI:10.1029/2022wr033242
摘要

Abstract Extreme rainfall events in mountainous environments usually induce significant sediment runoff or mass movements—debris flows, hyperconcentrated flows and stream flows—that pose substantial threats to human life and infrastructure. However, understanding of the sediment transport mechanisms that control these torrent processes remains incomplete due to the lack of comprehensive field data. This study uses a unique field data set to investigate the characteristics of the transport mechanisms of different channelized sediment‐laden flows. Results confirm that sediments in hyperconcentrated flows and stream flows are mainly supported by viscous shear and turbulent stresses, while grain collisional stresses dominate debris‐flow dynamics. Lahars, a unique sediment transport process in volcanic environments, exhibit a wide range of transport mechanisms similar to those in the three different flow types. Furthermore, the Einstein number (dimensionless sediment flux) exhibits a power‐law relationship with the dimensionless flow discharge. Machine learning is then used to draw boundaries in the Einstein number‐dimensionless discharge scheme to classify one flow from the other and thereby aid in developing appropriate hazard assessments for torrential processes in mountainous and volcanic environments based on measurable hydrologic and geomorphic parameters. The proposed scheme provides a universal criterion that improves existing classification methods that depend solely on the sediment concentration for quantifying the runoff‐to‐debris flow transition relevant to landscape evolution studies and hazard assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hugeyoung发布了新的文献求助20
1秒前
噔噔蹬完成签到 ,获得积分10
1秒前
ozy完成签到 ,获得积分10
1秒前
3秒前
3秒前
5秒前
优美的谷完成签到,获得积分10
6秒前
未来可期发布了新的文献求助10
7秒前
Masetti1完成签到 ,获得积分10
7秒前
细心的恋风完成签到,获得积分10
7秒前
LL关闭了LL文献求助
8秒前
courage完成签到,获得积分10
10秒前
11秒前
欧阳正义发布了新的文献求助10
12秒前
隐形书白完成签到,获得积分10
12秒前
12秒前
15秒前
隐形书白发布了新的文献求助10
15秒前
赘婿应助陶醉的蜜蜂采纳,获得10
17秒前
韩凡发布了新的文献求助10
17秒前
黄晓悦发布了新的文献求助10
17秒前
Eric发布了新的文献求助20
18秒前
华仔应助拔丝香芋采纳,获得10
19秒前
LL关闭了LL文献求助
19秒前
无花果应助IVY采纳,获得10
19秒前
20秒前
田様应助薛定谔的猫采纳,获得10
21秒前
22秒前
天语黑音完成签到 ,获得积分10
22秒前
22秒前
独特的秋完成签到,获得积分10
24秒前
26秒前
yi发布了新的文献求助10
27秒前
科目三应助沉默白猫采纳,获得10
28秒前
28秒前
30秒前
科研通AI5应助昵昵格子鱼采纳,获得10
31秒前
体贴花卷发布了新的文献求助10
32秒前
许许发布了新的文献求助10
35秒前
Roach发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432