Image‐based scatter correction for cone‐beam CT using flip swin transformer U‐shape network

计算机科学 卷积神经网络 人工智能 图像质量 锥束ct 残余物 蒙特卡罗方法 探测器 模式识别(心理学) 算法 数学 计算机断层摄影术 图像(数学) 统计 电信 放射科 医学
作者
Xueren Zhang,Yangkang Jiang,Chen Luo,Dengwang Li,Tianye Niu,Gang Yu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (8): 5002-5019 被引量:1
标识
DOI:10.1002/mp.16277
摘要

Cone beam computed tomography (CBCT) plays an increasingly important role in image-guided radiation therapy. However, the image quality of CBCT is severely degraded by excessive scatter contamination, especially in the abdominal region, hindering its further applications in radiation therapy.To restore low-quality CBCT images contaminated by scatter signals, a scatter correction algorithm combining the advantages of convolutional neural networks (CNN) and Swin Transformer is proposed.In this paper a scatter correction model for CBCT image, the Flip Swin Transformer U-shape network (FSTUNet) model, is proposed. In this model, the advantages of CNN in texture detail and Swin Transformer in global correlation are used to accurately extract shallow and deep features, respectively. Instead of using the original Swin Transformer tandem structure, we build the Flip Swin Transformer Block to achieve a more powerful inter-window association extraction. The validity and clinical relevance of the method is demonstrated through extensive experiments on a Monte Carlo (MC) simulation dataset and frequency split dataset generated by a validated method, respectively.Experimental results on the MC simulated dataset show that the root mean square error of images corrected by the method is reduced from over 100 HU to about 7 HU. Both the structural similarity index measure (SSIM) and the universal quality index (UQI) are close to 1. Experimental results on the frequency split dataset demonstrate that the method not only corrects shading artifacts but also exhibits a high degree of structural consistency. In addition, comparison experiments show that FSTUNet outperforms UNet, Deep Residual Convolutional Neural Network (DRCNN), DSENet, Pix2pixGAN, and 3DUnet methods in both qualitative and quantitative metrics.Accurately capturing the features at different levels is greatly beneficial for reconstructing high-quality scatter-free images. The proposed FSTUNet method is an effective solution to CBCT scatter correction and has the potential to improve the accuracy of CBCT image-guided radiation therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默己完成签到 ,获得积分10
1秒前
orixero应助努力飞的麻雀采纳,获得10
1秒前
科研老大妈完成签到 ,获得积分10
2秒前
研友_VZG7GZ应助easymoney采纳,获得10
3秒前
zhonglv7应助xuan采纳,获得10
3秒前
水水完成签到,获得积分10
3秒前
热情的乐荷完成签到,获得积分10
3秒前
微微发布了新的文献求助10
3秒前
千里江山一只蝇完成签到,获得积分10
3秒前
健壮的蘑菇完成签到,获得积分10
4秒前
舍瓦完成签到,获得积分10
5秒前
夏老师完成签到,获得积分10
5秒前
Monica发布了新的文献求助10
6秒前
7秒前
7秒前
lin完成签到,获得积分10
8秒前
善学以致用应助孤独的匕采纳,获得10
8秒前
隐形曼青应助边疆采纳,获得10
8秒前
吕吕完成签到,获得积分10
9秒前
9秒前
852应助健壮的蘑菇采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
yan完成签到,获得积分10
10秒前
11秒前
迷人冥完成签到 ,获得积分10
12秒前
夏老师发布了新的文献求助10
12秒前
12秒前
科研通AI6应助xuan采纳,获得10
13秒前
HBin完成签到,获得积分10
13秒前
14秒前
yan发布了新的文献求助10
15秒前
meteor完成签到 ,获得积分10
16秒前
赘婿应助兔子吃胡萝卜采纳,获得10
16秒前
vivre223发布了新的文献求助10
16秒前
17秒前
lzm发布了新的文献求助10
17秒前
科研宝完成签到,获得积分10
18秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646612
求助须知:如何正确求助?哪些是违规求助? 4771918
关于积分的说明 15035835
捐赠科研通 4805361
什么是DOI,文献DOI怎么找? 2569639
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485860