Image‐based scatter correction for cone‐beam CT using flip swin transformer U‐shape network

计算机科学 卷积神经网络 人工智能 图像质量 锥束ct 残余物 蒙特卡罗方法 探测器 模式识别(心理学) 算法 数学 计算机断层摄影术 图像(数学) 统计 电信 放射科 医学
作者
Xueren Zhang,Yangkang Jiang,Chen Luo,Dengwang Li,Tianye Niu,Gang Yu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (8): 5002-5019 被引量:1
标识
DOI:10.1002/mp.16277
摘要

Cone beam computed tomography (CBCT) plays an increasingly important role in image-guided radiation therapy. However, the image quality of CBCT is severely degraded by excessive scatter contamination, especially in the abdominal region, hindering its further applications in radiation therapy.To restore low-quality CBCT images contaminated by scatter signals, a scatter correction algorithm combining the advantages of convolutional neural networks (CNN) and Swin Transformer is proposed.In this paper a scatter correction model for CBCT image, the Flip Swin Transformer U-shape network (FSTUNet) model, is proposed. In this model, the advantages of CNN in texture detail and Swin Transformer in global correlation are used to accurately extract shallow and deep features, respectively. Instead of using the original Swin Transformer tandem structure, we build the Flip Swin Transformer Block to achieve a more powerful inter-window association extraction. The validity and clinical relevance of the method is demonstrated through extensive experiments on a Monte Carlo (MC) simulation dataset and frequency split dataset generated by a validated method, respectively.Experimental results on the MC simulated dataset show that the root mean square error of images corrected by the method is reduced from over 100 HU to about 7 HU. Both the structural similarity index measure (SSIM) and the universal quality index (UQI) are close to 1. Experimental results on the frequency split dataset demonstrate that the method not only corrects shading artifacts but also exhibits a high degree of structural consistency. In addition, comparison experiments show that FSTUNet outperforms UNet, Deep Residual Convolutional Neural Network (DRCNN), DSENet, Pix2pixGAN, and 3DUnet methods in both qualitative and quantitative metrics.Accurately capturing the features at different levels is greatly beneficial for reconstructing high-quality scatter-free images. The proposed FSTUNet method is an effective solution to CBCT scatter correction and has the potential to improve the accuracy of CBCT image-guided radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助zzrg采纳,获得30
刚刚
背后的钢铁侠完成签到,获得积分10
刚刚
adgfasdvz发布了新的文献求助10
1秒前
Lazarus发布了新的文献求助10
2秒前
sci-administer完成签到,获得积分10
2秒前
3秒前
yukino发布了新的文献求助10
4秒前
Bravejjq完成签到,获得积分10
5秒前
7秒前
9秒前
一一应助Charming采纳,获得20
9秒前
whs发布了新的文献求助10
9秒前
默默柚子完成签到,获得积分10
10秒前
科研通AI2S应助潇洒莞采纳,获得10
11秒前
唠叨的善若完成签到 ,获得积分10
11秒前
13秒前
14秒前
15秒前
16秒前
斯文败类应助zpmi采纳,获得10
17秒前
17秒前
17秒前
18秒前
平芜新月发布了新的文献求助10
18秒前
Hou发布了新的文献求助10
19秒前
19秒前
暗器完成签到,获得积分10
20秒前
我是老大应助静待花开采纳,获得10
20秒前
平常吐司发布了新的文献求助10
21秒前
22秒前
研友_8Rl61n发布了新的文献求助10
24秒前
脑洞疼应助冷艳铁身采纳,获得10
24秒前
雨前知了完成签到,获得积分10
27秒前
夜願发布了新的文献求助10
28秒前
viauue9完成签到,获得积分10
28秒前
领导范儿应助谢书繁采纳,获得10
29秒前
30秒前
平常吐司完成签到,获得积分10
31秒前
平芜新月完成签到,获得积分20
32秒前
魔芋不爽完成签到,获得积分20
32秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233151
求助须知:如何正确求助?哪些是违规求助? 2879802
关于积分的说明 8212729
捐赠科研通 2547256
什么是DOI,文献DOI怎么找? 1376693
科研通“疑难数据库(出版商)”最低求助积分说明 647682
邀请新用户注册赠送积分活动 623073