Image‐based scatter correction for cone‐beam CT using flip swin transformer U‐shape network

计算机科学 卷积神经网络 人工智能 图像质量 锥束ct 残余物 蒙特卡罗方法 探测器 模式识别(心理学) 算法 数学 计算机断层摄影术 图像(数学) 统计 电信 放射科 医学
作者
Xueren Zhang,Yangkang Jiang,Chen Luo,Dengwang Li,Tianye Niu,Gang Yu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (8): 5002-5019 被引量:1
标识
DOI:10.1002/mp.16277
摘要

Cone beam computed tomography (CBCT) plays an increasingly important role in image-guided radiation therapy. However, the image quality of CBCT is severely degraded by excessive scatter contamination, especially in the abdominal region, hindering its further applications in radiation therapy.To restore low-quality CBCT images contaminated by scatter signals, a scatter correction algorithm combining the advantages of convolutional neural networks (CNN) and Swin Transformer is proposed.In this paper a scatter correction model for CBCT image, the Flip Swin Transformer U-shape network (FSTUNet) model, is proposed. In this model, the advantages of CNN in texture detail and Swin Transformer in global correlation are used to accurately extract shallow and deep features, respectively. Instead of using the original Swin Transformer tandem structure, we build the Flip Swin Transformer Block to achieve a more powerful inter-window association extraction. The validity and clinical relevance of the method is demonstrated through extensive experiments on a Monte Carlo (MC) simulation dataset and frequency split dataset generated by a validated method, respectively.Experimental results on the MC simulated dataset show that the root mean square error of images corrected by the method is reduced from over 100 HU to about 7 HU. Both the structural similarity index measure (SSIM) and the universal quality index (UQI) are close to 1. Experimental results on the frequency split dataset demonstrate that the method not only corrects shading artifacts but also exhibits a high degree of structural consistency. In addition, comparison experiments show that FSTUNet outperforms UNet, Deep Residual Convolutional Neural Network (DRCNN), DSENet, Pix2pixGAN, and 3DUnet methods in both qualitative and quantitative metrics.Accurately capturing the features at different levels is greatly beneficial for reconstructing high-quality scatter-free images. The proposed FSTUNet method is an effective solution to CBCT scatter correction and has the potential to improve the accuracy of CBCT image-guided radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
michaelvin完成签到,获得积分10
1秒前
学术大白完成签到 ,获得积分10
4秒前
4秒前
SYT完成签到,获得积分10
5秒前
6秒前
8秒前
8秒前
8秒前
9秒前
9秒前
魏伯安发布了新的文献求助10
9秒前
9秒前
zhouleiwang完成签到,获得积分10
10秒前
李爱国应助aiming采纳,获得10
11秒前
无奈傲菡完成签到,获得积分10
12秒前
TT发布了新的文献求助10
12秒前
啦啦啦发布了新的文献求助10
13秒前
sun发布了新的文献求助10
14秒前
荣荣完成签到,获得积分10
14秒前
15秒前
小安完成签到,获得积分10
16秒前
Spencer完成签到 ,获得积分10
16秒前
PengHu完成签到,获得积分10
17秒前
17秒前
19秒前
21秒前
21秒前
21秒前
ywang发布了新的文献求助10
22秒前
失眠虔纹完成签到,获得积分10
22秒前
斯文败类应助nextconnie采纳,获得10
22秒前
药学牛马发布了新的文献求助10
26秒前
26秒前
27秒前
30秒前
张无缺完成签到,获得积分10
33秒前
35秒前
CodeCraft应助MES采纳,获得10
36秒前
笨笨乘风完成签到,获得积分10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849