Image‐based scatter correction for cone‐beam CT using flip swin transformer U‐shape network

计算机科学 卷积神经网络 人工智能 图像质量 锥束ct 残余物 蒙特卡罗方法 探测器 模式识别(心理学) 算法 数学 计算机断层摄影术 图像(数学) 统计 电信 放射科 医学
作者
Xueren Zhang,Yangkang Jiang,Chen Luo,Dengwang Li,Tianye Niu,Gang Yu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (8): 5002-5019 被引量:1
标识
DOI:10.1002/mp.16277
摘要

Cone beam computed tomography (CBCT) plays an increasingly important role in image-guided radiation therapy. However, the image quality of CBCT is severely degraded by excessive scatter contamination, especially in the abdominal region, hindering its further applications in radiation therapy.To restore low-quality CBCT images contaminated by scatter signals, a scatter correction algorithm combining the advantages of convolutional neural networks (CNN) and Swin Transformer is proposed.In this paper a scatter correction model for CBCT image, the Flip Swin Transformer U-shape network (FSTUNet) model, is proposed. In this model, the advantages of CNN in texture detail and Swin Transformer in global correlation are used to accurately extract shallow and deep features, respectively. Instead of using the original Swin Transformer tandem structure, we build the Flip Swin Transformer Block to achieve a more powerful inter-window association extraction. The validity and clinical relevance of the method is demonstrated through extensive experiments on a Monte Carlo (MC) simulation dataset and frequency split dataset generated by a validated method, respectively.Experimental results on the MC simulated dataset show that the root mean square error of images corrected by the method is reduced from over 100 HU to about 7 HU. Both the structural similarity index measure (SSIM) and the universal quality index (UQI) are close to 1. Experimental results on the frequency split dataset demonstrate that the method not only corrects shading artifacts but also exhibits a high degree of structural consistency. In addition, comparison experiments show that FSTUNet outperforms UNet, Deep Residual Convolutional Neural Network (DRCNN), DSENet, Pix2pixGAN, and 3DUnet methods in both qualitative and quantitative metrics.Accurately capturing the features at different levels is greatly beneficial for reconstructing high-quality scatter-free images. The proposed FSTUNet method is an effective solution to CBCT scatter correction and has the potential to improve the accuracy of CBCT image-guided radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助zx采纳,获得10
1秒前
1秒前
1秒前
友好的易槐完成签到,获得积分10
1秒前
2秒前
ben完成签到,获得积分10
2秒前
XYN1发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
bonnie应助LLY采纳,获得50
4秒前
4秒前
kjaiod完成签到,获得积分10
4秒前
林伯格完成签到,获得积分10
5秒前
科研通AI6应助wangyiren采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
顾矜应助无心的夏烟采纳,获得10
7秒前
cy__发布了新的文献求助10
7秒前
科研通AI2S应助赣南橙采纳,获得10
8秒前
快记晓霜应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
曾经青柏完成签到,获得积分10
8秒前
咸鱼lmye发布了新的文献求助10
8秒前
爆米花应助张力仁采纳,获得10
8秒前
宁静致远应助科研通管家采纳,获得10
8秒前
nancylan应助Ling采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
bkagyin应助王王采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
星辰大海应助松本润迷妹采纳,获得10
10秒前
Ava应助科研通管家采纳,获得20
10秒前
10秒前
Hello应助科研通管家采纳,获得10
10秒前
LL完成签到 ,获得积分10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
汉堡包应助如风随水采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260690
求助须知:如何正确求助?哪些是违规求助? 4422036
关于积分的说明 13764988
捐赠科研通 4296360
什么是DOI,文献DOI怎么找? 2357306
邀请新用户注册赠送积分活动 1353657
关于科研通互助平台的介绍 1314921