已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-View Kernel Learning for Identification of Disease Genes

核(代数) 推论 鉴定(生物学) 计算机科学 多核学习 集合(抽象数据类型) 人工智能 相似性(几何) 机器学习 秩(图论) 核方法 字符串内核 数据挖掘 计算生物学 理论计算机科学 支持向量机 径向基函数核 数学 生物 植物 组合数学 图像(数学) 程序设计语言
作者
Ekta Shah,Pradipta Maji
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2278-2290
标识
DOI:10.1109/tcbb.2023.3247033
摘要

Gene expression data sets and protein-protein interaction (PPI) networks are two heterogeneous data sources that have been extensively studied, due to their ability to capture the co-expression patterns among genes and their topological connections. Although they depict different traits of the data, both of them tend to group co-functional genes together. This phenomenon agrees with the basic assumption of multi-view kernel learning, according to which different views of the data contain a similar inherent cluster structure. Based on this inference, a new multi-view kernel learning based disease gene identification algorithm, termed as DiGId, is put forward. A novel multi-view kernel learning approach is proposed that aims to learn a consensus kernel, which efficiently captures the heterogeneous information of individual views as well as depicts the underlying inherent cluster structure. Some low-rank constraints are imposed on the learned multi-view kernel, so that it can effectively be partitioned into k or fewer clusters. The learned joint cluster structure is used to curate a set of potential disease genes. Moreover, a novel approach is put forward to quantify the importance of each view. In order to demonstrate the effectiveness of the proposed approach in capturing the relevant information depicted by individual views, an extensive analysis is performed on four different cancer-related gene expression data sets and PPI network, considering different similarity measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助10
2秒前
4秒前
萌萌完成签到 ,获得积分10
4秒前
Ace发布了新的文献求助10
5秒前
hyhyhyhy发布了新的文献求助20
5秒前
5秒前
7秒前
酥糖完成签到,获得积分10
8秒前
9秒前
wbh发布了新的文献求助10
10秒前
小马甲应助Theeminions采纳,获得10
10秒前
11秒前
小遇完成签到 ,获得积分10
12秒前
CAOHOU给务实的菓的求助进行了留言
13秒前
13秒前
研友_Y59785应助hyhyhyhy采纳,获得10
14秒前
小二郎应助wbh采纳,获得10
16秒前
hyy发布了新的文献求助10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
LaTeXer应助科研通管家采纳,获得150
22秒前
Ava应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
23秒前
23秒前
LaTeXer应助科研通管家采纳,获得200
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
核桃发布了新的文献求助10
28秒前
刘玉梅完成签到,获得积分10
29秒前
32秒前
Starwalker应助怕黑的安雁采纳,获得10
34秒前
自然的鹭洋关注了科研通微信公众号
36秒前
sun完成签到,获得积分10
36秒前
香蕉奇迹完成签到,获得积分10
37秒前
研究僧完成签到,获得积分10
39秒前
slmj完成签到,获得积分20
39秒前
平常大门完成签到,获得积分10
40秒前
君寻完成签到 ,获得积分10
41秒前
41秒前
完美蚂蚁发布了新的文献求助10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994433
求助须知:如何正确求助?哪些是违规求助? 3534839
关于积分的说明 11266585
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749