亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-View Kernel Learning for Identification of Disease Genes

核(代数) 推论 鉴定(生物学) 计算机科学 多核学习 集合(抽象数据类型) 人工智能 相似性(几何) 机器学习 秩(图论) 核方法 字符串内核 数据挖掘 计算生物学 理论计算机科学 支持向量机 径向基函数核 数学 生物 植物 组合数学 图像(数学) 程序设计语言
作者
Ekta Shah,Pradipta Maji
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2278-2290
标识
DOI:10.1109/tcbb.2023.3247033
摘要

Gene expression data sets and protein-protein interaction (PPI) networks are two heterogeneous data sources that have been extensively studied, due to their ability to capture the co-expression patterns among genes and their topological connections. Although they depict different traits of the data, both of them tend to group co-functional genes together. This phenomenon agrees with the basic assumption of multi-view kernel learning, according to which different views of the data contain a similar inherent cluster structure. Based on this inference, a new multi-view kernel learning based disease gene identification algorithm, termed as DiGId, is put forward. A novel multi-view kernel learning approach is proposed that aims to learn a consensus kernel, which efficiently captures the heterogeneous information of individual views as well as depicts the underlying inherent cluster structure. Some low-rank constraints are imposed on the learned multi-view kernel, so that it can effectively be partitioned into k or fewer clusters. The learned joint cluster structure is used to curate a set of potential disease genes. Moreover, a novel approach is put forward to quantify the importance of each view. In order to demonstrate the effectiveness of the proposed approach in capturing the relevant information depicted by individual views, an extensive analysis is performed on four different cancer-related gene expression data sets and PPI network, considering different similarity measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助机智冰姬采纳,获得10
7秒前
十三完成签到,获得积分20
11秒前
18秒前
漫漫发布了新的文献求助10
26秒前
27秒前
小张完成签到 ,获得积分10
28秒前
29秒前
30秒前
33秒前
现代CC完成签到 ,获得积分10
35秒前
科研通AI5应助漫漫采纳,获得10
36秒前
展锋发布了新的文献求助10
37秒前
陶醉元冬完成签到,获得积分10
38秒前
bkagyin应助爱听歌凤灵采纳,获得10
38秒前
英姑应助123采纳,获得10
41秒前
斯文败类应助奥黛丽悟空采纳,获得10
45秒前
47秒前
48秒前
51秒前
55秒前
桐桐应助111采纳,获得10
1分钟前
1分钟前
爱听歌凤灵完成签到,获得积分10
1分钟前
今日发布了新的文献求助10
1分钟前
Lucas应助七色光采纳,获得10
1分钟前
充电宝应助彭蓬采纳,获得10
1分钟前
Splaink完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助花骨头采纳,获得10
1分钟前
今日完成签到,获得积分10
1分钟前
蕊蕊应助奥黛丽悟空采纳,获得10
1分钟前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
111发布了新的文献求助10
2分钟前
2分钟前
Owen应助xuan采纳,获得30
2分钟前
七色光发布了新的文献求助10
2分钟前
科研通AI5应助杭州007采纳,获得30
2分钟前
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918