Multi-View Kernel Learning for Identification of Disease Genes

核(代数) 推论 鉴定(生物学) 计算机科学 多核学习 集合(抽象数据类型) 人工智能 相似性(几何) 机器学习 秩(图论) 核方法 字符串内核 数据挖掘 计算生物学 理论计算机科学 支持向量机 径向基函数核 数学 生物 图像(数学) 组合数学 程序设计语言 植物
作者
Ekta Shah,Pradipta Maji
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2278-2290
标识
DOI:10.1109/tcbb.2023.3247033
摘要

Gene expression data sets and protein-protein interaction (PPI) networks are two heterogeneous data sources that have been extensively studied, due to their ability to capture the co-expression patterns among genes and their topological connections. Although they depict different traits of the data, both of them tend to group co-functional genes together. This phenomenon agrees with the basic assumption of multi-view kernel learning, according to which different views of the data contain a similar inherent cluster structure. Based on this inference, a new multi-view kernel learning based disease gene identification algorithm, termed as DiGId, is put forward. A novel multi-view kernel learning approach is proposed that aims to learn a consensus kernel, which efficiently captures the heterogeneous information of individual views as well as depicts the underlying inherent cluster structure. Some low-rank constraints are imposed on the learned multi-view kernel, so that it can effectively be partitioned into k or fewer clusters. The learned joint cluster structure is used to curate a set of potential disease genes. Moreover, a novel approach is put forward to quantify the importance of each view. In order to demonstrate the effectiveness of the proposed approach in capturing the relevant information depicted by individual views, an extensive analysis is performed on four different cancer-related gene expression data sets and PPI network, considering different similarity measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个快乐的吃货完成签到,获得积分10
刚刚
七七发布了新的文献求助10
刚刚
可爱的函函应助iiiorange采纳,获得10
1秒前
哎呀妈呀完成签到,获得积分10
1秒前
Akim应助清晨的小鹿采纳,获得10
1秒前
CHEN完成签到 ,获得积分10
2秒前
bkagyin应助xc采纳,获得10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
凌爽完成签到 ,获得积分10
6秒前
6秒前
朴素的松鼠完成签到,获得积分10
6秒前
6秒前
8秒前
舒心阁完成签到,获得积分10
8秒前
mango_完成签到,获得积分10
8秒前
9秒前
10秒前
科研通AI2S应助xiajiahao采纳,获得10
10秒前
YOOO发布了新的文献求助10
10秒前
Zhi应助直率的心情采纳,获得10
10秒前
11秒前
jxc发布了新的文献求助10
11秒前
咻咻发布了新的文献求助10
12秒前
yin发布了新的文献求助10
12秒前
13秒前
14秒前
汉堡包应助陌然浅笑采纳,获得10
15秒前
CodeCraft应助老实乌冬面采纳,获得10
15秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
Ran完成签到 ,获得积分10
17秒前
微笑的忆枫应助曾浩采纳,获得10
18秒前
mark发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799370
求助须知:如何正确求助?哪些是违规求助? 5799235
关于积分的说明 15499826
捐赠科研通 4925783
什么是DOI,文献DOI怎么找? 2651643
邀请新用户注册赠送积分活动 1598701
关于科研通互助平台的介绍 1553583