Automated Sleep Stages Classification Using Convolutional Neural Network From Raw and Time-Frequency Electroencephalogram Signals: Systematic Evaluation Study

卷积神经网络 计算机科学 模式识别(心理学) 人工智能 脑电图 小波变换 多导睡眠图 预处理器 小波 语音识别 心理学 精神科
作者
Shahab Haghayegh,Kun Hu,Katie L. Stone,Susan Redline,Eva Schernhammer
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e40211-e40211 被引量:2
标识
DOI:10.2196/40211
摘要

Background Most existing automated sleep staging methods rely on multimodal data, and scoring a specific epoch requires not only the current epoch but also a sequence of consecutive epochs that precede and follow the epoch. Objective We proposed and tested a convolutional neural network called SleepInceptionNet, which allows sleep classification of a single epoch using a single-channel electroencephalogram (EEG). Methods SleepInceptionNet is based on our systematic evaluation of the effects of different EEG preprocessing methods, EEG channels, and convolutional neural networks on automatic sleep staging performance. The evaluation was performed using polysomnography data of 883 participants (937,975 thirty-second epochs). Raw data of individual EEG channels (ie, frontal, central, and occipital) and 3 specific transformations of the data, including power spectral density, continuous wavelet transform, and short-time Fourier transform, were used separately as the inputs of the convolutional neural network models. To classify sleep stages, 7 sequential deep neural networks were tested for the 1D data (ie, raw EEG and power spectral density), and 16 image classifier convolutional neural networks were tested for the 2D data (ie, continuous wavelet transform and short-time Fourier transform time-frequency images). Results The best model, SleepInceptionNet, which uses time-frequency images developed by the continuous wavelet transform method from central single-channel EEG data as input to the InceptionV3 image classifier algorithm, achieved a Cohen κ agreement of 0.705 (SD 0.077) in reference to the gold standard polysomnography. Conclusions SleepInceptionNet may allow real-time automated sleep staging in free-living conditions using a single-channel EEG, which may be useful for on-demand intervention or treatment during specific sleep stages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzyt发布了新的文献求助10
1秒前
1秒前
zhihaiyu完成签到 ,获得积分10
1秒前
lyric发布了新的文献求助10
1秒前
飞云之下发布了新的文献求助10
2秒前
星空完成签到 ,获得积分10
2秒前
2秒前
279完成签到,获得积分10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
小阳完成签到 ,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
jiangshanshan发布了新的文献求助10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
4秒前
池羽完成签到,获得积分10
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
无花果应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027