Automated Sleep Stages Classification Using Convolutional Neural Network From Raw and Time-Frequency Electroencephalogram Signals: Systematic Evaluation Study

卷积神经网络 计算机科学 模式识别(心理学) 人工智能 脑电图 小波变换 多导睡眠图 预处理器 小波 语音识别 心理学 精神科
作者
Shahab Haghayegh,Kun Hu,Katie L. Stone,Susan Redline,Eva Schernhammer
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e40211-e40211 被引量:2
标识
DOI:10.2196/40211
摘要

Background Most existing automated sleep staging methods rely on multimodal data, and scoring a specific epoch requires not only the current epoch but also a sequence of consecutive epochs that precede and follow the epoch. Objective We proposed and tested a convolutional neural network called SleepInceptionNet, which allows sleep classification of a single epoch using a single-channel electroencephalogram (EEG). Methods SleepInceptionNet is based on our systematic evaluation of the effects of different EEG preprocessing methods, EEG channels, and convolutional neural networks on automatic sleep staging performance. The evaluation was performed using polysomnography data of 883 participants (937,975 thirty-second epochs). Raw data of individual EEG channels (ie, frontal, central, and occipital) and 3 specific transformations of the data, including power spectral density, continuous wavelet transform, and short-time Fourier transform, were used separately as the inputs of the convolutional neural network models. To classify sleep stages, 7 sequential deep neural networks were tested for the 1D data (ie, raw EEG and power spectral density), and 16 image classifier convolutional neural networks were tested for the 2D data (ie, continuous wavelet transform and short-time Fourier transform time-frequency images). Results The best model, SleepInceptionNet, which uses time-frequency images developed by the continuous wavelet transform method from central single-channel EEG data as input to the InceptionV3 image classifier algorithm, achieved a Cohen κ agreement of 0.705 (SD 0.077) in reference to the gold standard polysomnography. Conclusions SleepInceptionNet may allow real-time automated sleep staging in free-living conditions using a single-channel EEG, which may be useful for on-demand intervention or treatment during specific sleep stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
着急的cc完成签到,获得积分10
2秒前
kiterunner发布了新的文献求助10
3秒前
wangYJ完成签到,获得积分10
5秒前
莹莹完成签到 ,获得积分10
5秒前
充电宝应助yuyuwei采纳,获得10
5秒前
lili发布了新的文献求助10
7秒前
牛马学生完成签到,获得积分10
7秒前
爆米花应助JM采纳,获得30
7秒前
年年完成签到,获得积分20
7秒前
哭泣绿旋完成签到,获得积分10
8秒前
Ava应助m李采纳,获得10
8秒前
8秒前
Lau完成签到,获得积分20
12秒前
tq完成签到,获得积分10
12秒前
一只羊完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
嘟嘟完成签到 ,获得积分10
13秒前
14秒前
Akim应助李昕123采纳,获得20
14秒前
地理汪汪发布了新的文献求助10
14秒前
15秒前
在水一方应助lili采纳,获得10
15秒前
诺坎普的晚风完成签到,获得积分20
15秒前
17秒前
浮游应助料峭声花采纳,获得10
17秒前
JamesPei应助明白放弃采纳,获得10
18秒前
18秒前
WWW完成签到 ,获得积分10
19秒前
酸酸给酸酸的求助进行了留言
20秒前
22秒前
22秒前
lijiauyi1994发布了新的文献求助10
23秒前
23秒前
lili完成签到,获得积分10
25秒前
Lucas应助vayne采纳,获得10
25秒前
有魅力的沧海完成签到 ,获得积分10
26秒前
科研通AI6应助地理汪汪采纳,获得10
26秒前
lll发布了新的文献求助20
27秒前
所所应助白三采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439