Automated Sleep Stages Classification Using Convolutional Neural Network From Raw and Time-Frequency Electroencephalogram Signals: Systematic Evaluation Study

卷积神经网络 计算机科学 模式识别(心理学) 人工智能 脑电图 小波变换 多导睡眠图 预处理器 小波 语音识别 心理学 精神科
作者
Shahab Haghayegh,Kun Hu,Katie L. Stone,Susan Redline,Eva Schernhammer
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e40211-e40211 被引量:2
标识
DOI:10.2196/40211
摘要

Background Most existing automated sleep staging methods rely on multimodal data, and scoring a specific epoch requires not only the current epoch but also a sequence of consecutive epochs that precede and follow the epoch. Objective We proposed and tested a convolutional neural network called SleepInceptionNet, which allows sleep classification of a single epoch using a single-channel electroencephalogram (EEG). Methods SleepInceptionNet is based on our systematic evaluation of the effects of different EEG preprocessing methods, EEG channels, and convolutional neural networks on automatic sleep staging performance. The evaluation was performed using polysomnography data of 883 participants (937,975 thirty-second epochs). Raw data of individual EEG channels (ie, frontal, central, and occipital) and 3 specific transformations of the data, including power spectral density, continuous wavelet transform, and short-time Fourier transform, were used separately as the inputs of the convolutional neural network models. To classify sleep stages, 7 sequential deep neural networks were tested for the 1D data (ie, raw EEG and power spectral density), and 16 image classifier convolutional neural networks were tested for the 2D data (ie, continuous wavelet transform and short-time Fourier transform time-frequency images). Results The best model, SleepInceptionNet, which uses time-frequency images developed by the continuous wavelet transform method from central single-channel EEG data as input to the InceptionV3 image classifier algorithm, achieved a Cohen κ agreement of 0.705 (SD 0.077) in reference to the gold standard polysomnography. Conclusions SleepInceptionNet may allow real-time automated sleep staging in free-living conditions using a single-channel EEG, which may be useful for on-demand intervention or treatment during specific sleep stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有为发布了新的文献求助10
刚刚
刚刚
1秒前
Annieqqiu完成签到 ,获得积分10
1秒前
唠叨的以柳完成签到,获得积分20
1秒前
Gu完成签到,获得积分10
2秒前
一汪完成签到,获得积分10
2秒前
斯文莺发布了新的文献求助10
3秒前
xcc完成签到,获得积分10
4秒前
Jally完成签到 ,获得积分10
4秒前
范先生完成签到,获得积分10
4秒前
5秒前
6秒前
yx_cheng应助权志龙采纳,获得20
6秒前
大个应助唠叨的以柳采纳,获得10
6秒前
开放又亦发布了新的文献求助10
7秒前
7秒前
寒川厚完成签到,获得积分10
7秒前
拜拜拜仁发布了新的文献求助10
8秒前
顺利毕业发布了新的文献求助20
8秒前
张先生完成签到 ,获得积分10
8秒前
T拐拐发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
巴黎的防发布了新的文献求助10
9秒前
Litm完成签到 ,获得积分10
9秒前
10秒前
暖落完成签到,获得积分10
10秒前
11秒前
xiaomaxia完成签到 ,获得积分10
11秒前
gou发布了新的文献求助10
13秒前
希望天下0贩的0应助xu采纳,获得10
13秒前
我有柳叶刀完成签到,获得积分10
14秒前
tree发布了新的文献求助10
14秒前
14秒前
15秒前
Leeu发布了新的文献求助30
15秒前
Pefdixe发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650