Simulation strategies for ReaxFF molecular dynamics in coal pyrolysis applications: A review

雷亚克夫 热解 分子动力学 化学 计算机科学 生化工程 工艺工程 计算化学 工程类 有机化学 原子间势
作者
Shuaihong Liu,Lihong Wei,Qian Zhou,Tianhua Yang,Shaobai Li,Quan Zhou
出处
期刊:Journal of Analytical and Applied Pyrolysis [Elsevier]
卷期号:170: 105882-105882 被引量:109
标识
DOI:10.1016/j.jaap.2023.105882
摘要

Research on pyrolysis mechanisms has attracted significant attention as they can efficiently assist in coal resource utilization. Although experimental techniques have significant advantages in terms of quantitative assays, exploring the detailed chemical mechanisms and complex reaction pathways of pyrolysis requires computational methods. Therefore, the emergence of ReaxFF molecular dynamics (ReaxFF MD), which can characterize the kinetics of microscopic reactions at the atomic scale, facilitates in-depth investigation of the reaction mechanism of coal pyrolysis, making it a significant research focus. Hence, in this review, we provide comprehensive simulation strategies for ReaxFF MD in coal pyrolysis applications. First, methods for determining the structural characteristics of coal are summarized. We focus on research advances in coal models and propose current model construction strategies, such as modeling, optimization, and validation. Second, the application scope and limitations of various model scales for pyrolysis simulation research are discussed, providing new insights into the effective construction and pioneering development of coal models. Subsequently, we present start-up details for ReaxFF MD simulations and summarize the types of force fields used for coal pyrolysis simulations together with the specifications for their development. Moreover, we focus on simulation strategies for ReaxFF MD in coal pyrolysis applications, including the effects of temperature, heating rate, and simulation time. Third, we mention future development trends and research directions according to the latest progress in coal pyrolysis applications using ReaxFF MD. Finally, the review concludes with a brief discussion of future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
俭朴涫发布了新的文献求助10
2秒前
浮游应助yayabing采纳,获得10
2秒前
2秒前
刘慧敏完成签到,获得积分10
3秒前
4秒前
SciGPT应助蔚蓝天空采纳,获得10
4秒前
filili发布了新的文献求助10
4秒前
CT完成签到,获得积分20
4秒前
一一发布了新的文献求助10
5秒前
依依发布了新的文献求助10
5秒前
JamesPei应助liuqc采纳,获得10
6秒前
悠悠应助hahahahahe采纳,获得10
6秒前
7秒前
7秒前
8秒前
森林木发布了新的文献求助10
9秒前
KYRIE完成签到,获得积分20
9秒前
10秒前
成就的鲂发布了新的文献求助10
10秒前
11秒前
深情安青应助丁论文采纳,获得10
12秒前
关正卿完成签到,获得积分10
12秒前
程风破浪发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
ym发布了新的文献求助10
15秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
小哦嘿应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
小哦嘿应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176