亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning from synthetic to routine clinical data for motion artefact detection in brain T1-weighted MRI

计算机科学 人工智能 重影 计算机视觉 运动(物理) 学习迁移 合成数据 医学影像学 模式识别(心理学)
作者
Sophie Loizillon,Simona Bottani,Aurélien Maire,Sébastian Ströer,Didier Dormont,Olivier Colliot,Ninon Burgos
标识
DOI:10.1117/12.2648201
摘要

Clinical data warehouses (CDWs) contain the medical data of millions of patients and represent a great opportunity to develop computational tools. MRIs are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are unusable because corrupted by these artefacts. Since their manual detection is impossible due to the number of scans, it is necessary to develop a tool to automatically exclude images with motion in order to fully exploit CDWs. In this paper, we propose a CNN for the automatic detection of motion in 3D T1-weighted brain MRI. Our transfer learning approach, based on synthetic motion generation, consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the manual labelling of 5500 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy<80%). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and to highlight the importance of a clinical validation of models trained on research data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霡霂发布了新的文献求助10
15秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
熬夜波比应助科研通管家采纳,获得10
25秒前
心随以动完成签到 ,获得积分10
34秒前
40秒前
修辛完成签到 ,获得积分10
42秒前
一见喜发布了新的文献求助10
44秒前
好好好完成签到,获得积分10
1分钟前
1分钟前
Jiangtao完成签到,获得积分10
1分钟前
huyu完成签到 ,获得积分10
1分钟前
1分钟前
SoreThrow发布了新的文献求助10
1分钟前
2分钟前
Leo发布了新的文献求助10
2分钟前
活泼的路人完成签到,获得积分10
2分钟前
2分钟前
Leo完成签到,获得积分10
2分钟前
啊z应助科研通管家采纳,获得10
2分钟前
2分钟前
yhw发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Lu发布了新的文献求助10
3分钟前
JamesPei应助puzhongjiMiQ采纳,获得10
3分钟前
NN应助puzhongjiMiQ采纳,获得10
3分钟前
搜集达人应助puzhongjiMiQ采纳,获得10
3分钟前
ccm应助puzhongjiMiQ采纳,获得10
3分钟前
彭于晏应助puzhongjiMiQ采纳,获得10
3分钟前
完美世界应助puzhongjiMiQ采纳,获得10
3分钟前
pluto应助puzhongjiMiQ采纳,获得10
3分钟前
ccm应助puzhongjiMiQ采纳,获得10
3分钟前
wanci应助puzhongjiMiQ采纳,获得10
3分钟前
Hello应助puzhongjiMiQ采纳,获得10
3分钟前
霡霂完成签到,获得积分10
3分钟前
4分钟前
孙漪发布了新的文献求助10
4分钟前
4分钟前
wanci应助孙漪采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681524
求助须知:如何正确求助?哪些是违规求助? 5009593
关于积分的说明 15175775
捐赠科研通 4841036
什么是DOI,文献DOI怎么找? 2594852
邀请新用户注册赠送积分活动 1547875
关于科研通互助平台的介绍 1505880