Transfer learning from synthetic to routine clinical data for motion artefact detection in brain T1-weighted MRI

计算机科学 人工智能 重影 计算机视觉 运动(物理) 学习迁移 合成数据 医学影像学 模式识别(心理学)
作者
Sophie Loizillon,Simona Bottani,Aurélien Maire,Sébastian Ströer,Didier Dormont,Olivier Colliot,Ninon Burgos
标识
DOI:10.1117/12.2648201
摘要

Clinical data warehouses (CDWs) contain the medical data of millions of patients and represent a great opportunity to develop computational tools. MRIs are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are unusable because corrupted by these artefacts. Since their manual detection is impossible due to the number of scans, it is necessary to develop a tool to automatically exclude images with motion in order to fully exploit CDWs. In this paper, we propose a CNN for the automatic detection of motion in 3D T1-weighted brain MRI. Our transfer learning approach, based on synthetic motion generation, consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the manual labelling of 5500 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy<80%). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and to highlight the importance of a clinical validation of models trained on research data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
aaa发布了新的文献求助30
6秒前
布吉岛发布了新的文献求助10
7秒前
亦安完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
柔弱的便当完成签到,获得积分10
11秒前
12秒前
12秒前
fanlin完成签到,获得积分0
14秒前
布吉岛完成签到,获得积分10
14秒前
知行者发布了新的文献求助10
16秒前
my发布了新的文献求助10
16秒前
hzy完成签到,获得积分10
16秒前
17秒前
AJY发布了新的文献求助10
21秒前
22秒前
Ava应助zfd采纳,获得10
22秒前
司佳雨完成签到,获得积分10
23秒前
echo完成签到 ,获得积分10
24秒前
25秒前
SciGPT应助OU采纳,获得10
26秒前
小福发布了新的文献求助10
28秒前
29秒前
29秒前
英俊的铭应助尤其采纳,获得10
30秒前
AJY完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
xxm发布了新的文献求助10
33秒前
zfd发布了新的文献求助10
33秒前
my关闭了my文献求助
34秒前
冷傲的帽子完成签到 ,获得积分10
34秒前
36秒前
zongjian3完成签到 ,获得积分10
38秒前
magiczhu完成签到,获得积分10
38秒前
Xin完成签到,获得积分10
39秒前
42秒前
无花果应助咸鱼不翻身采纳,获得10
42秒前
李雅琳完成签到 ,获得积分10
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425244
求助须知:如何正确求助?哪些是违规求助? 4539333
关于积分的说明 14166974
捐赠科研通 4456649
什么是DOI,文献DOI怎么找? 2444274
邀请新用户注册赠送积分活动 1435255
关于科研通互助平台的介绍 1412637