Transfer learning from synthetic to routine clinical data for motion artefact detection in brain T1-weighted MRI

计算机科学 人工智能 重影 计算机视觉 运动(物理) 学习迁移 合成数据 医学影像学 模式识别(心理学)
作者
Sophie Loizillon,Simona Bottani,Aurélien Maire,Sébastian Ströer,Didier Dormont,Olivier Colliot,Ninon Burgos
标识
DOI:10.1117/12.2648201
摘要

Clinical data warehouses (CDWs) contain the medical data of millions of patients and represent a great opportunity to develop computational tools. MRIs are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are unusable because corrupted by these artefacts. Since their manual detection is impossible due to the number of scans, it is necessary to develop a tool to automatically exclude images with motion in order to fully exploit CDWs. In this paper, we propose a CNN for the automatic detection of motion in 3D T1-weighted brain MRI. Our transfer learning approach, based on synthetic motion generation, consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the manual labelling of 5500 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy<80%). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and to highlight the importance of a clinical validation of models trained on research data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
打打应助欣喜战斗机采纳,获得10
1秒前
1秒前
sola发布了新的文献求助10
1秒前
LZX发布了新的文献求助10
2秒前
无极微光应助Echen采纳,获得20
2秒前
李爱国应助养了个豆豆采纳,获得10
2秒前
Tina发布了新的文献求助30
4秒前
midus发布了新的文献求助10
4秒前
5秒前
wcy发布了新的文献求助10
5秒前
言欢完成签到,获得积分20
6秒前
无敌龙傲天完成签到,获得积分10
7秒前
7秒前
8秒前
asd应助daisy采纳,获得30
8秒前
8秒前
笨笨水儿完成签到 ,获得积分10
8秒前
10秒前
Otorhino完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
YingyingFan发布了新的文献求助10
12秒前
12秒前
Ccccsa发布了新的文献求助10
12秒前
背后的惜珊完成签到 ,获得积分10
13秒前
LZX完成签到,获得积分20
13秒前
123456发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
优雅酸奶发布了新的文献求助10
15秒前
15秒前
Feathamity发布了新的文献求助10
15秒前
温暖的子骞完成签到,获得积分10
17秒前
pancake应助ACE采纳,获得50
17秒前
19秒前
21秒前
木木发布了新的文献求助30
21秒前
木泽发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031