Transfer learning from synthetic to routine clinical data for motion artefact detection in brain T1-weighted MRI

计算机科学 人工智能 重影 计算机视觉 运动(物理) 学习迁移 合成数据 医学影像学 模式识别(心理学)
作者
Sophie Loizillon,Simona Bottani,Aurélien Maire,Sébastian Ströer,Didier Dormont,Olivier Colliot,Ninon Burgos
标识
DOI:10.1117/12.2648201
摘要

Clinical data warehouses (CDWs) contain the medical data of millions of patients and represent a great opportunity to develop computational tools. MRIs are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are unusable because corrupted by these artefacts. Since their manual detection is impossible due to the number of scans, it is necessary to develop a tool to automatically exclude images with motion in order to fully exploit CDWs. In this paper, we propose a CNN for the automatic detection of motion in 3D T1-weighted brain MRI. Our transfer learning approach, based on synthetic motion generation, consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the manual labelling of 5500 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy<80%). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and to highlight the importance of a clinical validation of models trained on research data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一木张完成签到,获得积分10
1秒前
小熊发布了新的文献求助10
3秒前
小蘑菇应助liuxg_2000采纳,获得30
4秒前
沉静逍遥发布了新的文献求助10
6秒前
Akim应助苏苏采纳,获得10
6秒前
NZH发布了新的文献求助10
8秒前
10秒前
飞扬的刘海儿应助yangbo采纳,获得10
10秒前
zzz完成签到,获得积分10
10秒前
11秒前
蟹蟹发布了新的文献求助10
12秒前
我是老大应助完美的海秋采纳,获得10
13秒前
奶茶麻辣烫完成签到,获得积分10
15秒前
16秒前
轻风完成签到 ,获得积分10
16秒前
我要吃饭完成签到 ,获得积分10
16秒前
逻辑猫发布了新的文献求助20
17秒前
秋半梦发布了新的文献求助10
17秒前
可爱的函函应助热情半梅采纳,获得10
17秒前
苏苏发布了新的文献求助10
18秒前
Sandy发布了新的文献求助10
19秒前
彩虹马发布了新的文献求助10
19秒前
zzz发布了新的文献求助10
19秒前
林鱼丸完成签到,获得积分10
20秒前
搞怪远侵完成签到,获得积分10
21秒前
ho完成签到,获得积分10
21秒前
25秒前
lotus777完成签到 ,获得积分10
26秒前
打打应助标致白卉采纳,获得10
26秒前
科研通AI2S应助彩虹马采纳,获得10
26秒前
maox1aoxin应助李y梅子采纳,获得20
27秒前
28秒前
林鱼丸发布了新的文献求助10
29秒前
30秒前
tuotuo完成签到,获得积分10
30秒前
毕业就集采的苦命人完成签到,获得积分10
31秒前
烟花应助刘歌采纳,获得10
32秒前
青梅憔悴完成签到 ,获得积分10
33秒前
打辩论的雪饼完成签到,获得积分10
33秒前
33秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238389
求助须知:如何正确求助?哪些是违规求助? 2883793
关于积分的说明 8231686
捐赠科研通 2551769
什么是DOI,文献DOI怎么找? 1380253
科研通“疑难数据库(出版商)”最低求助积分说明 648987
邀请新用户注册赠送积分活动 624619