Transfer learning from synthetic to routine clinical data for motion artefact detection in brain T1-weighted MRI

计算机科学 人工智能 重影 计算机视觉 运动(物理) 学习迁移 合成数据 医学影像学 模式识别(心理学)
作者
Sophie Loizillon,Simona Bottani,Aurélien Maire,Sébastian Ströer,Didier Dormont,Olivier Colliot,Ninon Burgos
标识
DOI:10.1117/12.2648201
摘要

Clinical data warehouses (CDWs) contain the medical data of millions of patients and represent a great opportunity to develop computational tools. MRIs are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are unusable because corrupted by these artefacts. Since their manual detection is impossible due to the number of scans, it is necessary to develop a tool to automatically exclude images with motion in order to fully exploit CDWs. In this paper, we propose a CNN for the automatic detection of motion in 3D T1-weighted brain MRI. Our transfer learning approach, based on synthetic motion generation, consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the manual labelling of 5500 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy<80%). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and to highlight the importance of a clinical validation of models trained on research data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dujinjun完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
7秒前
左左曦完成签到,获得积分10
10秒前
上上签完成签到,获得积分10
10秒前
无心的星月完成签到 ,获得积分10
13秒前
好吃的小米完成签到,获得积分10
13秒前
怡然猎豹完成签到,获得积分0
15秒前
16秒前
上下完成签到 ,获得积分10
18秒前
Mr.Ren完成签到,获得积分10
19秒前
xu完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
妍宝贝完成签到 ,获得积分10
22秒前
25秒前
26秒前
小成完成签到,获得积分10
28秒前
香蕉发布了新的文献求助10
28秒前
爱科研的小虞完成签到 ,获得积分10
28秒前
康康爱研究完成签到 ,获得积分10
29秒前
拾一完成签到,获得积分10
29秒前
陈昱桦完成签到,获得积分10
31秒前
橘子石榴完成签到,获得积分10
32秒前
在水一方应助DDD采纳,获得10
32秒前
柳树完成签到,获得积分10
32秒前
hony完成签到,获得积分10
34秒前
34秒前
35秒前
香蕉完成签到,获得积分10
36秒前
花花完成签到,获得积分10
36秒前
浮尘完成签到 ,获得积分0
39秒前
40秒前
任伟超完成签到,获得积分10
42秒前
43秒前
Isabel完成签到 ,获得积分10
44秒前
木雨亦潇潇完成签到,获得积分10
46秒前
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677086
求助须知:如何正确求助?哪些是违规求助? 4970454
关于积分的说明 15159354
捐赠科研通 4836760
什么是DOI,文献DOI怎么找? 2591317
邀请新用户注册赠送积分活动 1544792
关于科研通互助平台的介绍 1502815