溶解
歧化
X射线光电子能谱
电解质
电导率
X射线吸收光谱法
阴极
材料科学
分析化学(期刊)
无机化学
化学
吸收光谱法
化学工程
物理化学
电极
量子力学
生物化学
物理
工程类
色谱法
催化作用
作者
Julia C. Hestenes,Jerzy T. Sadowski,Richard May,Lauren E. Marbella
标识
DOI:10.1021/acsmaterialsau.2c00060
摘要
The high-voltage LiNi0.5Mn1.5O4 (LNMO) spinel cathode material offers high energy density storage capabilities without the use of costly Co that is prevalent in other Li-ion battery chemistries (e.g., LiNixMnyCozO2 (NMC)). Unfortunately, LNMO-containing batteries suffer from poor cycling performance because of the intrinsically coupled processes of electrolyte oxidation and transition metal dissolution that occurs at high voltage. In this work, we use operando electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies to demonstrate that transition metal dissolution in LNMO is tightly coupled to HF formation (and thus, electrolyte oxidation reactions as detected with operando and in situ solution NMR), indicative of an acid-driven disproportionation reaction that occurs during delithiation (i.e., battery charging). Leveraging the temporal resolution (s-min) of magnetic resonance, we find that the LNMO particles accelerate the rate of LiPF6 decomposition and subsequent Mn2+ dissolution, possibly due to the acidic nature of terminal Mn-OH groups. X-ray photoemission electron microscopy (XPEEM) provides surface-sensitive and localized X-ray absorption spectroscopy (XAS) measurements, in addition to X-ray photoelectron spectroscopy (XPS), that indicate disproportionation is enabled by surface reconstruction upon charging, which leads to surface Mn3+ sites on the LNMO particle surface that can disproportionate into Mn2+(dissolved) and Mn4+(s). During discharge of the battery, we observe high quantities of metal fluorides (in particular, MnF2) in the cathode electrolyte interphase (CEI) on LNMO as well as the conductive carbon additives in the composite. Electronic conductivity measurements indicate that the MnF2 decreases film conductivity by threefold compared to LiF, suggesting that this CEI component may impede both the ionic and electronic properties of the cathode. Ultimately, to prevent transition metal dissolution and the associated side reactions in spinel-type cathodes (particularly those that operate at high voltages like LNMO), the use of electrolytes that offer improved anodic stability and prevent acid byproducts will likely be necessary.
科研通智能强力驱动
Strongly Powered by AbleSci AI