Deep Learning Reconstruction for Accelerated Spine MRI: Prospective Analysis of Interchangeability

医学 互换性 脊柱(分子生物学) 前瞻性队列研究 放射科 医学物理学 人工智能 外科 生物信息学 计算机科学 生物 程序设计语言
作者
Haidara Almansour,Judith Herrmann,Sebastian Gassenmaier,Saif Afat,Johann Jacoby,Gregor Koerzdoerfer,Dominik Nickel,Mahmoud Mostapha,Mariappan S. Nadar,Ahmed E. Othman
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:38
标识
DOI:10.1148/radiol.212922
摘要

Background Deep learning (DL)-based MRI reconstructions can reduce examination times for turbo spin-echo (TSE) acquisitions. Studies that prospectively employ DL-based reconstructions of rapidly acquired, undersampled spine MRI are needed. Purpose To investigate the diagnostic interchangeability of an unrolled DL-reconstructed TSE (hereafter, TSEDL) T1- and T2-weighted acquisition method with standard TSE and to test their impact on acquisition time, image quality, and diagnostic confidence. Materials and Methods This prospective single-center study included participants with various spinal abnormalities who gave written consent from November 2020 to July 2021. Each participant underwent two MRI examinations: standard fully sampled T1- and T2-weighted TSE acquisitions (reference standard) and prospectively undersampled TSEDL acquisitions with threefold and fourfold acceleration. Image evaluation was performed by five readers. Interchangeability analysis and an image quality-based analysis were used to compare the TSE and TSEDL images. Acquisition time and diagnostic confidence were also compared. Interchangeability was tested using the individual equivalence index regarding various degenerative and nondegenerative entities, which were analyzed on each vertebra and defined as discordant clinical judgments of less than 5%. Interreader and intrareader agreement and concordance (κ and Kendall τ and W statistics) were computed and Wilcoxon and McNemar tests were used. Results Overall, 50 participants were evaluated (mean age, 46 years ± 18 [SD]; 26 men). The TSEDL method enabled up to a 70% reduction in total acquisition time (100 seconds for TSEDL vs 328 seconds for TSE, P < .001). All individual equivalence indexes were less than 4%. TSEDL acquisition was rated as having superior image noise by all readers (P < .001). No evidence of a difference was found between standard TSE and TSEDL regarding frequency of major findings, overall image quality, or diagnostic confidence. Conclusion The deep learning (DL)-reconstructed turbo spin-echo (TSE) method was found to be interchangeable with standard TSE for detecting various abnormalities of the spine at MRI. DL-reconstructed TSE acquisition provided excellent image quality, with a 70% reduction in examination time. German Clinical Trials Register no. DRKS00023278 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Hallinan in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一口吃三个月亮完成签到,获得积分10
1秒前
闲尾完成签到,获得积分10
1秒前
腼腆的乐安完成签到,获得积分10
3秒前
Roxanne完成签到,获得积分10
4秒前
CodeCraft应助申思采纳,获得10
5秒前
XZY发布了新的文献求助10
5秒前
烟花应助柯仇天采纳,获得10
7秒前
Zz完成签到 ,获得积分10
7秒前
10秒前
搜集达人应助ppppp采纳,获得10
11秒前
ppppp完成签到,获得积分10
15秒前
Darren发布了新的文献求助50
15秒前
闪闪元芹完成签到,获得积分10
18秒前
春江完成签到,获得积分10
20秒前
可爱的函函应助lql采纳,获得10
20秒前
我是老大应助yxy采纳,获得10
23秒前
25秒前
26秒前
Andy完成签到 ,获得积分10
29秒前
31秒前
31秒前
33秒前
ppppp发布了新的文献求助10
33秒前
37秒前
柯仇天发布了新的文献求助10
37秒前
鲸落发布了新的文献求助10
39秒前
44秒前
Master发布了新的文献求助20
48秒前
49秒前
juanjuan应助柯仇天采纳,获得10
49秒前
lige完成签到 ,获得积分10
50秒前
50秒前
51秒前
52秒前
王灿灿应助秋蚓采纳,获得50
53秒前
54秒前
55秒前
伊伊发布了新的文献求助30
57秒前
冷静沛白完成签到,获得积分10
58秒前
zoe发布了新的文献求助10
58秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023