Prediction of knee pain improvement over two years for knee osteoarthritis using a dynamic nomogram based on MRI-derived radiomics: a proof-of-concept study

列线图 医学 无线电技术 骨关节炎 磁共振成像 逻辑回归 队列 放射科 物理疗法 内科学 病理 替代医学
作者
Ting Lin,Shengwang Peng,Shi-Long Lu,Shuai Fu,Dong Zeng,Jia Li,Tianyu Chen,Tianxiang Fan,C. Max Lang,Siyuan Feng,Jianhua Ma,Chen Zhao,Benny Antony,Flavia Maria Cicuttini,Xianyue Quan,Zhaohua Zhu,Changhai Ding
出处
期刊:Osteoarthritis and Cartilage [Elsevier]
卷期号:31 (2): 267-278 被引量:1
标识
DOI:10.1016/j.joca.2022.10.014
摘要

To develop and validate a nomogram to detect improved knee pain in osteoarthritis (OA) by integrating magnetic resonance imaging (MRI) radiomics signature of subchondral bone and clinical characteristics.Participants were selected from the Vitamin D Effects on Osteoarthritis (VIDEO) study. The primary outcome was 20% improvement of knee pain score over 2 years in participants administrated either vitamin D or placebo. Radiomics features of subchondral bone and clinical characteristics from 216 participants were extracted and analyzed. The participants were randomly split into the training and validation cohorts at a ratio of 8:2. Least absolute shrinkage and selection operator (LASSO) regression was used to select features and generate radiomics signatures. The optimal radiomics signature and clinical indicators were fitted into a nomogram using multivariable logistic regression model.The nomogram showed favorable discrimination performance [AUCtraining, 0.79 (95% CI: 0.72-0.79), AUCvalidation, 0.83 (95% CI: 0.70-0.96)] as well as a good calibration. Additional contributing value of fusion radiomics signature to the nomogram was statistically significant (NRI, 0.23; IDI, 0.14, P < 0.001 in training cohort and NRI, 0.29; IDI, 0.18, P < 0.05 in validating cohort). Decision curve analysis confirmed the clinical usefulness of nomogram.The radiomics-based nomogram comprising the MR radiomics signature and clinical variables achieves a favorable predictive efficacy and accuracy in differentiating improvement in knee pain among OA patients. This proof-of-concept study provides a promising way to predict clinically meaningful outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xx.完成签到,获得积分10
1秒前
星辰大海应助内向凌兰采纳,获得10
1秒前
1秒前
wuzhizhiya完成签到,获得积分10
2秒前
3秒前
rudjs发布了新的文献求助10
3秒前
6秒前
Ava应助何糖采纳,获得10
6秒前
桐桐应助美丽的芷烟采纳,获得10
6秒前
野子完成签到,获得积分10
7秒前
情怀应助小D采纳,获得30
8秒前
yuan发布了新的文献求助10
8秒前
berry发布了新的文献求助10
9秒前
9秒前
淡淡采白发布了新的文献求助10
10秒前
思源应助勤恳慕蕊采纳,获得10
10秒前
知犯何逆完成签到 ,获得积分10
11秒前
啊哈完成签到,获得积分10
11秒前
12秒前
12秒前
Draven完成签到 ,获得积分10
12秒前
tmpstlml发布了新的文献求助10
13秒前
张红梨完成签到,获得积分10
13秒前
迷迷完成签到,获得积分20
14秒前
14秒前
科研通AI2S应助chen采纳,获得10
15秒前
穿山甲坐飞机完成签到 ,获得积分10
15秒前
16秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
16秒前
科研通AI5应助经年采纳,获得10
16秒前
16秒前
勤劳晓亦应助木头人采纳,获得10
17秒前
科研通AI5应助想瘦的海豹采纳,获得10
17秒前
18秒前
科研通AI5应助adazbd采纳,获得10
18秒前
bkagyin应助皮皮桂采纳,获得10
18秒前
19秒前
重要的哈密瓜完成签到 ,获得积分10
19秒前
会飞的云完成签到 ,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808