Developing carbon quantum dots (CQDs) with the solvatochromic effect and exploring multifunctional applications remains challenging. Herein, robust solvatochromic carbon quantum dots (RS-CQDs) with emission shift up to ∼62 nm from yellow to red was fabricated by the hydrothermal method. The RS-CQDs was used to detect water and Sn4+ in the linear ranges and limits of detection of 2.0-97.6% and 0.14% and 6.24-53.18 μM and 66.3 nM, respectively, and was further applied to determine Sn4+ in practical water samples with satisfactory results. In addition, RS-CQDs exhibited bright red emission in oil media with a 9.7-fold increase in fluorescence relative to aqueous media, making them a wash-free probe for specifically staining lipids. Compared to the commercial lipid marker BODIPY 493/503, the RS-CQDs-based probe has significant advantages, such as longer emission, larger Stokes shift, and better photostability, ensuring that RS-CQDs-based marker can implement real-time and wash-free monitoring and imaging of lipids in living cells, liver tissues, zebrafish embryos, and zebrafish larvae. This study provides a novel research direction for the development of metal-doped CQDs by demonstrating RS-CQDs as the viability of fluorescence probes for water and Sn4+ detection and the efficiency of RS-CQDs as a fluorescent marker for lipid imaging.