High-resolution image reconstruction with latent diffusion models from human brain activity

计算机科学 人工智能 生成模型 忠诚 生成语法 透视图(图形) 深度学习 计算机视觉 模式识别(心理学) 机器学习 电信
作者
Yu Takagi,Shinji Nishimoto
标识
DOI:10.1101/2022.11.18.517004
摘要

Reconstructing visual experiences from human brain activity offers a unique way to understand how the brain represents the world, and to interpret the connection between computer vision models and our visual system. While deep generative models have recently been employed for this task, reconstructing realistic images with high semantic fidelity is still a challenging problem. Here, we propose a new method based on a diffusion model (DM) to reconstruct images from human brain activity obtained via functional magnetic resonance imaging (fMRI). More specifically, we rely on a latent diffusion model (LDM) termed Stable Diffusion. This model reduces the computational cost of DMs, while preserving their high generative performance. We also characterize the inner mechanisms of the LDM by studying how its different components (such as the latent vector of image Z, conditioning inputs C, and different elements of the denoising U-Net) relate to distinct brain functions. We show that our proposed method can reconstruct high-resolution images with high fidelity in straightforward fashion, without the need for any additional training and fine-tuning of complex deep-learning models. We also provide a quantitative interpretation of different LDM components from a neuroscientific perspective. Overall, our study proposes a promising method for reconstructing images from human brain activity, and provides a new framework for understanding DMs. Please check out our webpage at https://sites.google.com/view/stablediffusion-with-brain/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
楼十八发布了新的文献求助10
3秒前
摆烂好爽发布了新的文献求助10
5秒前
vent发布了新的文献求助10
5秒前
英姑应助塞西尔采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
CipherSage应助淡定海亦采纳,获得10
7秒前
7秒前
乐乐应助sheep采纳,获得20
8秒前
俞若枫完成签到,获得积分10
10秒前
楼十八完成签到,获得积分20
11秒前
12秒前
CodeCraft应助刘家小姐姐采纳,获得10
12秒前
13秒前
16秒前
17秒前
蒲云海发布了新的文献求助10
18秒前
自觉的向日葵完成签到,获得积分10
18秒前
柳叶洋完成签到,获得积分10
19秒前
成就迎梅发布了新的文献求助30
20秒前
20秒前
小艳发布了新的文献求助10
20秒前
刘家小姐姐完成签到,获得积分10
20秒前
九五式自动步枪完成签到 ,获得积分10
21秒前
ll完成签到,获得积分10
21秒前
24秒前
着急的cc完成签到,获得积分10
24秒前
yhhazj1314完成签到,获得积分10
31秒前
32秒前
意忆完成签到,获得积分10
33秒前
33秒前
略略略完成签到,获得积分10
35秒前
36秒前
37秒前
38秒前
38秒前
炫酷的雨发布了新的文献求助10
40秒前
vogo7完成签到,获得积分10
41秒前
41秒前
Firo完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309