清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of soil salinity parameters using machine learning models in an arid region of northwest China

土壤盐分 支持向量机 钠吸附比 土壤科学 土壤水分 盐度 环境科学 Pedotransfer函数 土工试验 数学 机器学习 导水率 计算机科学 灌溉 农学 生态学 滴灌 生物
作者
Chao Xiao,Qingyuan Ji,Junqing Chen,Fucang Zhang,Yi Li,Junliang Fan,Xianghao Hou,Fulai Yan,Han Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:204: 107512-107512 被引量:28
标识
DOI:10.1016/j.compag.2022.107512
摘要

Accurate estimation of soil ions composition is of great significance for preventing soil salinization and guiding crop irrigation. The traditional laboratory measurement of ions composition is accurate for calculating soil salinity parameters, but its application is often limited by the high cost and difficulty in long-term in-situ measurement. This study evaluated the performances of three machine learning models, i.e., random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGB), in predicting total dissolved ionic matter (TDI), potential salinity (PS), sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), residual sodium carbonate (RSC) and magnesium adsorption ratio (MAR) in soils. Soil temperature (T), potential hydrogen (pH), soil water content (SWC) and electrical conductivity (EC) were used as model input variables. Data from 467 soil samples in the Shihezi region of northwest China were used for model training–testing and validation. The results showed that the XGB model performed better when EC, SWC and T were used as input variables, while the RF and SVM models performed well when EC, T and pH were used. The XGB model had overall better performance than the SVM and RF models (with decreases in RMSE by 24.2%–54.8%), while the RF and XGB models showed better generalization capability than the SVM model. The XGB model with EC, SWC and T as input variables could be used to predict all the soil ions composition with coefficient of determination (R2) > 0.770 and residual prediction deviation (RPD) > 1.98, while the RF and SVM models with EC, SWC and pH as input variables could be used to predict TDI (R2 > 0.957, root mean square error (RMSE) < 1.284 g kg−1, RPD > 4.83), PS (R2 > 0.772, RMSE < 0.511 mol L−1, RPD > 2.1) and ESP (R2 > 0.67, RMSE < 9.249%, RPD > 1.74), and the RF model with EC, SWC and pH as input variables could be used to predict RSC (R2 > 0.609, RMSE < 1.060 mol L−1, RPD > 1.60). This study overcame the difficulty of traditional methods in predicting soil salinity parameters, evaluated the performances of different machine learning models, and optimized the input variable combinations. This study can help farmers in regions affected by soil salinization better manage planting practices and improve land sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
1分钟前
1分钟前
1分钟前
俺不中了完成签到,获得积分10
1分钟前
2分钟前
2分钟前
柴yuki完成签到 ,获得积分10
2分钟前
trophozoite完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
寻找组织完成签到,获得积分10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
ljyyy发布了新的文献求助10
3分钟前
ljyyy完成签到,获得积分10
3分钟前
4分钟前
4分钟前
皮皮虾发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
研友_VZG7GZ应助皮皮虾采纳,获得10
4分钟前
4分钟前
失眠思远发布了新的文献求助10
4分钟前
vbnn完成签到 ,获得积分10
4分钟前
尼古拉耶维奇完成签到 ,获得积分10
5分钟前
披着羊皮的狼完成签到 ,获得积分10
6分钟前
Chouvikin完成签到,获得积分10
6分钟前
6分钟前
皮皮虾发布了新的文献求助10
6分钟前
ding应助阿兹采纳,获得10
6分钟前
皮皮虾完成签到,获得积分20
6分钟前
激动的似狮完成签到,获得积分10
6分钟前
赘婿应助皮皮虾采纳,获得10
7分钟前
酷波er应助紫津采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
紫津发布了新的文献求助10
7分钟前
苒苒完成签到,获得积分10
7分钟前
来活发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078710
求助须知:如何正确求助?哪些是违规求助? 4297355
关于积分的说明 13388083
捐赠科研通 4120179
什么是DOI,文献DOI怎么找? 2256466
邀请新用户注册赠送积分活动 1260734
关于科研通互助平台的介绍 1194538