Prediction of soil salinity parameters using machine learning models in an arid region of northwest China

土壤盐分 支持向量机 钠吸附比 土壤科学 土壤水分 盐度 环境科学 Pedotransfer函数 土工试验 数学 机器学习 导水率 计算机科学 灌溉 农学 生态学 滴灌 生物
作者
Chao Xiao,Qingyuan Ji,Junqing Chen,Fucang Zhang,Yi Li,Junliang Fan,Xianghao Hou,Fulai Yan,Han Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107512-107512 被引量:59
标识
DOI:10.1016/j.compag.2022.107512
摘要

Accurate estimation of soil ions composition is of great significance for preventing soil salinization and guiding crop irrigation. The traditional laboratory measurement of ions composition is accurate for calculating soil salinity parameters, but its application is often limited by the high cost and difficulty in long-term in-situ measurement. This study evaluated the performances of three machine learning models, i.e., random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGB), in predicting total dissolved ionic matter (TDI), potential salinity (PS), sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), residual sodium carbonate (RSC) and magnesium adsorption ratio (MAR) in soils. Soil temperature (T), potential hydrogen (pH), soil water content (SWC) and electrical conductivity (EC) were used as model input variables. Data from 467 soil samples in the Shihezi region of northwest China were used for model training–testing and validation. The results showed that the XGB model performed better when EC, SWC and T were used as input variables, while the RF and SVM models performed well when EC, T and pH were used. The XGB model had overall better performance than the SVM and RF models (with decreases in RMSE by 24.2%–54.8%), while the RF and XGB models showed better generalization capability than the SVM model. The XGB model with EC, SWC and T as input variables could be used to predict all the soil ions composition with coefficient of determination (R2) > 0.770 and residual prediction deviation (RPD) > 1.98, while the RF and SVM models with EC, SWC and pH as input variables could be used to predict TDI (R2 > 0.957, root mean square error (RMSE) < 1.284 g kg−1, RPD > 4.83), PS (R2 > 0.772, RMSE < 0.511 mol L−1, RPD > 2.1) and ESP (R2 > 0.67, RMSE < 9.249%, RPD > 1.74), and the RF model with EC, SWC and pH as input variables could be used to predict RSC (R2 > 0.609, RMSE < 1.060 mol L−1, RPD > 1.60). This study overcame the difficulty of traditional methods in predicting soil salinity parameters, evaluated the performances of different machine learning models, and optimized the input variable combinations. This study can help farmers in regions affected by soil salinization better manage planting practices and improve land sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Lucas应助newnew采纳,获得10
2秒前
李爱国应助LX采纳,获得10
3秒前
小肥发布了新的文献求助10
3秒前
迷路冬卉完成签到,获得积分10
4秒前
5秒前
5秒前
万能图书馆应助狂野夜绿采纳,获得10
6秒前
zz发布了新的文献求助10
8秒前
踏雪飞鸿完成签到,获得积分10
8秒前
9秒前
zhishi发布了新的文献求助10
9秒前
xiaolei001应助激昂的如柏采纳,获得10
10秒前
14秒前
彭于晏应助张张采纳,获得30
15秒前
天天快乐应助成就的钢笔采纳,获得30
15秒前
NN发布了新的文献求助10
16秒前
18秒前
20秒前
万能图书馆应助喵喵不二采纳,获得10
20秒前
lome发布了新的文献求助10
21秒前
gllc发布了新的文献求助10
21秒前
22秒前
狂野夜绿发布了新的文献求助10
23秒前
23秒前
Oreo完成签到,获得积分10
24秒前
keal完成签到,获得积分10
26秒前
Groot发布了新的文献求助10
28秒前
topteng完成签到,获得积分20
28秒前
30秒前
simon发布了新的文献求助10
30秒前
31秒前
希望天下0贩的0应助NN采纳,获得10
32秒前
白白白戊发布了新的文献求助10
32秒前
33秒前
33秒前
34秒前
35秒前
李健应助吃鱼的猫采纳,获得10
36秒前
Orange应助am采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799295
求助须知:如何正确求助?哪些是违规求助? 5798781
关于积分的说明 15499670
捐赠科研通 4925751
什么是DOI,文献DOI怎么找? 2651626
邀请新用户注册赠送积分活动 1598681
关于科研通互助平台的介绍 1553565