Prediction of soil salinity parameters using machine learning models in an arid region of northwest China

土壤盐分 支持向量机 钠吸附比 土壤科学 土壤水分 盐度 环境科学 Pedotransfer函数 土工试验 数学 机器学习 导水率 计算机科学 灌溉 农学 生态学 生物 滴灌
作者
Chao Xiao,Qingyuan Ji,Junqing Chen,Fucang Zhang,Yi Li,Junliang Fan,Xianghao Hou,Fulai Yan,Han Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:204: 107512-107512 被引量:28
标识
DOI:10.1016/j.compag.2022.107512
摘要

Accurate estimation of soil ions composition is of great significance for preventing soil salinization and guiding crop irrigation. The traditional laboratory measurement of ions composition is accurate for calculating soil salinity parameters, but its application is often limited by the high cost and difficulty in long-term in-situ measurement. This study evaluated the performances of three machine learning models, i.e., random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGB), in predicting total dissolved ionic matter (TDI), potential salinity (PS), sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), residual sodium carbonate (RSC) and magnesium adsorption ratio (MAR) in soils. Soil temperature (T), potential hydrogen (pH), soil water content (SWC) and electrical conductivity (EC) were used as model input variables. Data from 467 soil samples in the Shihezi region of northwest China were used for model training–testing and validation. The results showed that the XGB model performed better when EC, SWC and T were used as input variables, while the RF and SVM models performed well when EC, T and pH were used. The XGB model had overall better performance than the SVM and RF models (with decreases in RMSE by 24.2%–54.8%), while the RF and XGB models showed better generalization capability than the SVM model. The XGB model with EC, SWC and T as input variables could be used to predict all the soil ions composition with coefficient of determination (R2) > 0.770 and residual prediction deviation (RPD) > 1.98, while the RF and SVM models with EC, SWC and pH as input variables could be used to predict TDI (R2 > 0.957, root mean square error (RMSE) < 1.284 g kg−1, RPD > 4.83), PS (R2 > 0.772, RMSE < 0.511 mol L−1, RPD > 2.1) and ESP (R2 > 0.67, RMSE < 9.249%, RPD > 1.74), and the RF model with EC, SWC and pH as input variables could be used to predict RSC (R2 > 0.609, RMSE < 1.060 mol L−1, RPD > 1.60). This study overcame the difficulty of traditional methods in predicting soil salinity parameters, evaluated the performances of different machine learning models, and optimized the input variable combinations. This study can help farmers in regions affected by soil salinization better manage planting practices and improve land sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
不会学术的羊完成签到,获得积分10
3秒前
3秒前
郢都小镇完成签到,获得积分20
4秒前
汉堡包应助青大最亮的仔采纳,获得10
4秒前
小淘气发布了新的文献求助10
5秒前
科研小白发布了新的文献求助10
5秒前
丘比特应助蒲云海采纳,获得10
6秒前
郢都小镇发布了新的文献求助10
7秒前
8秒前
yym发布了新的文献求助10
9秒前
111完成签到 ,获得积分10
9秒前
来碗面完成签到 ,获得积分10
10秒前
过儿完成签到,获得积分10
14秒前
来碗面关注了科研通微信公众号
14秒前
ding应助yym采纳,获得10
15秒前
打打应助嘿嘿嘿采纳,获得10
15秒前
情怀应助科研小白采纳,获得10
16秒前
16秒前
wuakeup关注了科研通微信公众号
18秒前
18秒前
gf49973发布了新的文献求助10
18秒前
华仔应助哈哈哈哈哈哈采纳,获得10
18秒前
英姑应助砍柴少年采纳,获得10
19秒前
19秒前
22秒前
打打应助棋士采纳,获得10
22秒前
青大最亮的仔完成签到,获得积分10
23秒前
26秒前
27秒前
乔乔兔应助向雨竹采纳,获得10
29秒前
棋士发布了新的文献求助10
30秒前
机智的紫丝完成签到,获得积分10
30秒前
jeronimo完成签到,获得积分10
32秒前
清爽胡萝卜完成签到,获得积分10
32秒前
37秒前
38秒前
mhq发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993