亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of soil salinity parameters using machine learning models in an arid region of northwest China

土壤盐分 支持向量机 钠吸附比 土壤科学 土壤水分 盐度 环境科学 Pedotransfer函数 土工试验 数学 机器学习 导水率 计算机科学 灌溉 农学 生态学 滴灌 生物
作者
Chao Xiao,Qingyuan Ji,Junqing Chen,Fucang Zhang,Yi Li,Junliang Fan,Xianghao Hou,Fulai Yan,Han Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107512-107512 被引量:59
标识
DOI:10.1016/j.compag.2022.107512
摘要

Accurate estimation of soil ions composition is of great significance for preventing soil salinization and guiding crop irrigation. The traditional laboratory measurement of ions composition is accurate for calculating soil salinity parameters, but its application is often limited by the high cost and difficulty in long-term in-situ measurement. This study evaluated the performances of three machine learning models, i.e., random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGB), in predicting total dissolved ionic matter (TDI), potential salinity (PS), sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), residual sodium carbonate (RSC) and magnesium adsorption ratio (MAR) in soils. Soil temperature (T), potential hydrogen (pH), soil water content (SWC) and electrical conductivity (EC) were used as model input variables. Data from 467 soil samples in the Shihezi region of northwest China were used for model training–testing and validation. The results showed that the XGB model performed better when EC, SWC and T were used as input variables, while the RF and SVM models performed well when EC, T and pH were used. The XGB model had overall better performance than the SVM and RF models (with decreases in RMSE by 24.2%–54.8%), while the RF and XGB models showed better generalization capability than the SVM model. The XGB model with EC, SWC and T as input variables could be used to predict all the soil ions composition with coefficient of determination (R2) > 0.770 and residual prediction deviation (RPD) > 1.98, while the RF and SVM models with EC, SWC and pH as input variables could be used to predict TDI (R2 > 0.957, root mean square error (RMSE) < 1.284 g kg−1, RPD > 4.83), PS (R2 > 0.772, RMSE < 0.511 mol L−1, RPD > 2.1) and ESP (R2 > 0.67, RMSE < 9.249%, RPD > 1.74), and the RF model with EC, SWC and pH as input variables could be used to predict RSC (R2 > 0.609, RMSE < 1.060 mol L−1, RPD > 1.60). This study overcame the difficulty of traditional methods in predicting soil salinity parameters, evaluated the performances of different machine learning models, and optimized the input variable combinations. This study can help farmers in regions affected by soil salinization better manage planting practices and improve land sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的琳发布了新的文献求助10
10秒前
环糊精发布了新的文献求助10
11秒前
21秒前
27秒前
无情的琳发布了新的文献求助10
37秒前
环糊精完成签到,获得积分10
45秒前
无情的琳完成签到,获得积分10
54秒前
58秒前
orixero应助polaris采纳,获得30
1分钟前
乔凌云发布了新的文献求助10
1分钟前
情怀应助乔凌云采纳,获得10
1分钟前
1分钟前
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
polaris完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
3分钟前
熙熙而乐完成签到,获得积分10
3分钟前
默mo完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
简单应助科研通管家采纳,获得10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
3分钟前
简单应助科研通管家采纳,获得10
3分钟前
简单应助科研通管家采纳,获得10
3分钟前
Criminology34应助熙熙而乐采纳,获得10
3分钟前
一墨完成签到,获得积分10
3分钟前
wing0087完成签到,获得积分10
4分钟前
4分钟前
乔凌云发布了新的文献求助10
5分钟前
万能图书馆应助乔凌云采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5802079
求助须知:如何正确求助?哪些是违规求助? 5822839
关于积分的说明 15505815
捐赠科研通 4927944
什么是DOI,文献DOI怎么找? 2652949
邀请新用户注册赠送积分活动 1600002
关于科研通互助平台的介绍 1554846