亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of soil salinity parameters using machine learning models in an arid region of northwest China

土壤盐分 支持向量机 钠吸附比 土壤科学 土壤水分 盐度 环境科学 Pedotransfer函数 土工试验 数学 机器学习 导水率 计算机科学 灌溉 农学 生态学 滴灌 生物
作者
Chao Xiao,Qingyuan Ji,Junqing Chen,Fucang Zhang,Yi Li,Junliang Fan,Xianghao Hou,Fulai Yan,Han Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107512-107512 被引量:28
标识
DOI:10.1016/j.compag.2022.107512
摘要

Accurate estimation of soil ions composition is of great significance for preventing soil salinization and guiding crop irrigation. The traditional laboratory measurement of ions composition is accurate for calculating soil salinity parameters, but its application is often limited by the high cost and difficulty in long-term in-situ measurement. This study evaluated the performances of three machine learning models, i.e., random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGB), in predicting total dissolved ionic matter (TDI), potential salinity (PS), sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), residual sodium carbonate (RSC) and magnesium adsorption ratio (MAR) in soils. Soil temperature (T), potential hydrogen (pH), soil water content (SWC) and electrical conductivity (EC) were used as model input variables. Data from 467 soil samples in the Shihezi region of northwest China were used for model training–testing and validation. The results showed that the XGB model performed better when EC, SWC and T were used as input variables, while the RF and SVM models performed well when EC, T and pH were used. The XGB model had overall better performance than the SVM and RF models (with decreases in RMSE by 24.2%–54.8%), while the RF and XGB models showed better generalization capability than the SVM model. The XGB model with EC, SWC and T as input variables could be used to predict all the soil ions composition with coefficient of determination (R2) > 0.770 and residual prediction deviation (RPD) > 1.98, while the RF and SVM models with EC, SWC and pH as input variables could be used to predict TDI (R2 > 0.957, root mean square error (RMSE) < 1.284 g kg−1, RPD > 4.83), PS (R2 > 0.772, RMSE < 0.511 mol L−1, RPD > 2.1) and ESP (R2 > 0.67, RMSE < 9.249%, RPD > 1.74), and the RF model with EC, SWC and pH as input variables could be used to predict RSC (R2 > 0.609, RMSE < 1.060 mol L−1, RPD > 1.60). This study overcame the difficulty of traditional methods in predicting soil salinity parameters, evaluated the performances of different machine learning models, and optimized the input variable combinations. This study can help farmers in regions affected by soil salinization better manage planting practices and improve land sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XIN发布了新的文献求助10
7秒前
mjf111发布了新的文献求助10
12秒前
mjf111完成签到,获得积分10
19秒前
34秒前
xz完成签到 ,获得积分10
49秒前
XIN发布了新的文献求助10
49秒前
XIN完成签到,获得积分10
58秒前
1分钟前
qiuxuan100发布了新的文献求助10
1分钟前
3分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Lucas应助强健的柚子采纳,获得10
3分钟前
4分钟前
5分钟前
5分钟前
大脸猫完成签到 ,获得积分10
6分钟前
yaoyao发布了新的文献求助10
6分钟前
chiazy完成签到 ,获得积分10
6分钟前
6分钟前
通科研完成签到 ,获得积分10
6分钟前
7分钟前
DrleedsG完成签到,获得积分10
7分钟前
DrleedsG发布了新的文献求助10
7分钟前
7分钟前
7分钟前
liner完成签到 ,获得积分10
7分钟前
8分钟前
9分钟前
星宫韩立完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
10分钟前
11分钟前
小马甲应助科研通管家采纳,获得10
11分钟前
11分钟前
12分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937611
关于积分的说明 8482551
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425949
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005