Prosopis juliflora valorization via microwave-assisted pyrolysis: Optimization of reaction parameters using machine learning analysis

热解 燃烧热 微波食品加热 产量(工程) 烧焦 材料科学 原材料 生物炭 化学工程 有机化学 制浆造纸工业 分析化学(期刊) 化学 复合材料 燃烧 计算机科学 电信 工程类
作者
Dadi V. Suriapparao,B. Rajasekhar Reddy,Chinta Sankar Rao,Lakshman Rao Jeeru,Hemanth Kumar Tanneru
出处
期刊:Journal of Analytical and Applied Pyrolysis [Elsevier BV]
卷期号:169: 105811-105811 被引量:13
标识
DOI:10.1016/j.jaap.2022.105811
摘要

Microwave power and pyrolysis temperature are essential parameters in optimizing the bio-oil yield and quality in microwave pyrolysis. This study focused on understanding the interactions between the microwave power/heating rate and pyrolysis temperature in microwave-assisted pyrolysis of Prosopis juliflora. For optimum bio-oil yield, a discrete set of microwave powers (280 W, 420 W, and 560 W) and pyrolysis temperatures (200 °C, 350 °C, and 500 °C) were selected. A central composite design (CCD) was adopted to analyze the effect of microwave power and the pyrolysis temperature on product yields, heating rate, microwave conversion efficiency, and heat losses in pyrolysis. Moreover, the effect of heating rate, reaction time, specific microwave power, specific microwave energy, and conductive heat loss on gas, char, and liquid yields was evaluated using statistical machine learning techniques. Moreover, a new parameter, pyrolysis index, is calculated under different conditions to understand the extent of pyrolysis intensity using pyrolysis time, heating value, feedstock mass and conversion, and microwave energy conversion. The yields of bio-oil, biochar, and gas were 25–40 wt%, 25–35 wt%, and 35–40 wt% at different experimental conditions. Bio-oil consists of a mix of organic compounds with methoxy phenols at high selectivity, and the calorific value of bio-oil was in the range of 26–28 MJ/kg. Carbon number analysis revealed higher presence of C5–C9 compounds. This study shows the role of machine learning in understanding the effect of various parameters effectively and optimizing the experimental conditions accordingly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Chara_kara发布了新的文献求助10
1秒前
传奇3应助小秦采纳,获得10
1秒前
芋泥好暖椰y完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
4秒前
陈住气发布了新的文献求助10
4秒前
Lydia发布了新的文献求助10
4秒前
6秒前
盆盆完成签到 ,获得积分10
7秒前
8秒前
foreverchoi发布了新的文献求助10
8秒前
可爱的函函应助化学之星采纳,获得10
9秒前
爆米花应助hddjeff采纳,获得30
9秒前
10秒前
wxy发布了新的文献求助10
10秒前
Lydia完成签到,获得积分10
10秒前
Sene发布了新的文献求助20
10秒前
11秒前
JeromeLi发布了新的文献求助10
11秒前
11秒前
标致乐双发布了新的文献求助10
11秒前
慕青应助丰富的乌冬面采纳,获得10
12秒前
上官若男应助foreverchoi采纳,获得10
13秒前
洗面奶发布了新的文献求助10
14秒前
Feng发布了新的文献求助20
14秒前
Slhy完成签到 ,获得积分10
15秒前
15秒前
小秦发布了新的文献求助10
15秒前
思思思发布了新的文献求助10
15秒前
17秒前
17秒前
震动的宛菡完成签到 ,获得积分10
18秒前
guan完成签到,获得积分10
19秒前
19秒前
xinxin发布了新的文献求助10
20秒前
heisa发布了新的文献求助10
20秒前
暴躁的棒棒糖完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624785
求助须知:如何正确求助?哪些是违规求助? 4024076
关于积分的说明 12456301
捐赠科研通 3708763
什么是DOI,文献DOI怎么找? 2045646
邀请新用户注册赠送积分活动 1077637
科研通“疑难数据库(出版商)”最低求助积分说明 960142