COMPARISON OF MACHINE LEARNING TECHNIQUES FOR PREDICTING NLR PROTEINS

人工智能 随机森林 机器学习 支持向量机 计算机科学 伪氨基酸组成 分类器(UML) 计算生物学 模式识别(心理学) 氨基酸 二肽 生物 生物化学
作者
Nadia Nadia,Ekta Gandotra,Narendra Kumar
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [National Taiwan University]
卷期号:35 (02) 被引量:1
标识
DOI:10.4015/s1016237222500508
摘要

The nucleotide-binding domain leucine-rich repeat-containing (NLR) proteins plays significant role in the intestinal tissue repair and innate immunity. It recently added to the members of innate immunity effectors molecules. It also plays an essential role in intestinal microbiota and recently emerged as a crucial hit for developing ulcerative colitis (UC) and colitis-associated cancer (CAC). A machine learning-based approach for predicting NLR proteins has been developed. In this study, we present a comparison of three supervised machine learning algorithms. Using ProtR and POSSUM Packages, the features are extracted for the dataset used in this work. The models are trained with the input compositional features generated using dipeptide composition, amino acid composition, etc., as well as Position Specific Scoring Matrix (PSSM) based compositions. The dataset consists of 390 proteins for the negative and positive datasets. The five-fold cross-validation (CV) is used to optimize Sequential Minimal Optimization (SMO) library of Support Vector Machine (LIBSVM) and Random Forest (RF) parameters, and the best model was selected. The proposed work performs rationally well with an accuracy of 90.91% and 93.94% for RF as the best classifier for the Amino Acid Composition (AAC) and PSE_PSSM-based model. We believe that this method is a reliable, rapid and useful prediction method for NLR Protein.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
思源应助蟹黄堡不打折采纳,获得10
2秒前
Lily应助科研通管家采纳,获得40
2秒前
敬老院N号应助科研通管家采纳,获得30
2秒前
zzzq应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
皮皮完成签到 ,获得积分10
2秒前
sallltyyy发布了新的文献求助10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
QPP完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
喜悦中道应助科研通管家采纳,获得10
2秒前
wzxxxx发布了新的文献求助10
3秒前
冬瓜炖排骨完成签到,获得积分10
3秒前
6666发布了新的文献求助10
3秒前
BB发布了新的文献求助10
4秒前
冷静雅青完成签到 ,获得积分10
5秒前
打打应助zhui采纳,获得10
5秒前
5秒前
科研通AI5应助xiu采纳,获得10
5秒前
6秒前
7秒前
William鉴哲完成签到,获得积分10
7秒前
神奇科研圆完成签到,获得积分10
7秒前
7秒前
biomds完成签到,获得积分10
7秒前
7秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794