Modular Construction of an MIL-101(Fe)@MIL-100(Fe) Dual-Compartment Nanoreactor and Its Boosted Photocatalytic Activity toward Tetracycline

光催化 材料科学 光降解 金属有机骨架 化学工程 吸附 异质结 复合数 纳米技术 催化作用 光电子学 复合材料 有机化学 化学 工程类
作者
Yuning Jin,Xichen Mi,Jianglu Qian,Na Ma,Wei Dai
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (42): 48285-48295 被引量:75
标识
DOI:10.1021/acsami.2c14489
摘要

Iron-based metal-organic frameworks (MOFs) have aroused extensive concern as prospective photocatalysts for antibiotic (e.g., tetracycline, TC) degradation. However, efficiencies of single and simple Fe-based MOFs still undergo restricted light absorption and weak charge separation. Assembly of different iron-based MOF building blocks into a hybrid MOF@MOF heterostructure reactor could be an encouraging strategy for the effective capture of antibiotics from the aqueous phase. This paper reports a new-style MIL-101(Fe)@MIL-100(Fe) photocatalyst, which was groundbreakingly constructed to realize a double win for boosting the performances of adsorption and photocatalysis. The optical response range, surface open sites, and charge separation efficiency of MIL-101(Fe)@MIL-100(Fe) can be regulated through accurate design and alteration. Attributed to the synergistic effects of double iron-based MOFs, MIL-101(Fe)@MIL-100(Fe) exhibits an excellent photocatalytic activity toward TC degradability compared to MIL-101(Fe) and MIL-100(Fe), which is even superior to those reported previously in the literature. Furthermore, the main active species of •O2- and h+ were proved through trapping tests of the photocatalytic process. Additionally, MIL-101(Fe)@MIL-100(Fe) possesses remarkable stability, maintaining more than 90% initial photocatalytic activity after the fifth cycle. In brief, MIL-101(Fe)@MIL-100(Fe) was highly efficient for TC degradation. Our work offers a new strategy for visible-light photodegradation of TC by exploring the double Fe-based MOF composite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guositing完成签到,获得积分10
2秒前
纪靖雁完成签到 ,获得积分10
3秒前
3秒前
夏天发布了新的文献求助20
3秒前
5秒前
5秒前
李健的小迷弟应助张张采纳,获得10
6秒前
啦啦啦啦发布了新的文献求助30
6秒前
政治完成签到 ,获得积分10
7秒前
7秒前
8秒前
李6666完成签到 ,获得积分10
9秒前
友好听云完成签到,获得积分10
9秒前
wo发布了新的文献求助10
10秒前
Alex发布了新的文献求助10
10秒前
劲秉应助Duang采纳,获得30
13秒前
Wu完成签到,获得积分20
13秒前
14秒前
友好听云发布了新的文献求助10
14秒前
漼漼完成签到,获得积分10
16秒前
16秒前
16秒前
田様应助晨晨采纳,获得10
16秒前
天天快乐应助tutou采纳,获得10
18秒前
李爱国应助Alex采纳,获得10
19秒前
20秒前
xx发布了新的文献求助10
22秒前
JamesPei应助漼漼采纳,获得10
22秒前
张张发布了新的文献求助10
22秒前
22秒前
云梦完成签到,获得积分10
23秒前
搜集达人应助救救孩子吧采纳,获得10
24秒前
24秒前
深夜拿铁完成签到,获得积分10
26秒前
阮俏发布了新的文献求助10
27秒前
27秒前
小天使海蒂完成签到 ,获得积分10
27秒前
28秒前
28秒前
JamesPei应助huhuhu采纳,获得10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732437
求助须知:如何正确求助?哪些是违规求助? 3276707
关于积分的说明 9998284
捐赠科研通 2992274
什么是DOI,文献DOI怎么找? 1642112
邀请新用户注册赠送积分活动 780227
科研通“疑难数据库(出版商)”最低求助积分说明 748713