Point Cloud–Based Concrete Surface Defect Semantic Segmentation

点云 分割 桥(图论) 计算机科学 激光雷达 集合(抽象数据类型) 云计算 数据集 测距 点(几何) 人工智能 计算机视觉 数据挖掘 结构工程 遥感 工程类 地质学 几何学 数学 电信 医学 操作系统 内科学 程序设计语言
作者
Neshat Bolourian,Majid Nasrollahi,Fardin Bahreini,Amin Hammad
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (2) 被引量:22
标识
DOI:10.1061/jccee5.cpeng-5009
摘要

Visual inspection is one of the main approaches for annual bridge inspection. Light detection and ranging (LiDAR) scanning is a new technology, which is beneficial because it collects the point clouds and the third dimension of the scanned objects. Deep learning (DL)-based methods have attracted researchers' attention for concrete surface defect detection. However, no point cloud–based DL method currently is available for semantic segmentation of bridge surface defects without converting the data set into other representations, which results in increasing the size of the data set. Moreover, most of the current point cloud–based concrete surface defect detection methods focus on only one type of defect. On the other hand, a data set plays a key role in DL. Therefore, the lack of publicly available point cloud data sets for bridge surface defects is one of the reasons for the lack of studies in this area. To address these issues, this paper created a publicly available point cloud data set for concrete bridge surface defect detection, and developed a point cloud–based semantic segmentation DL method to detect different types of concrete surface defects. Surface Normal Enhanced PointNet++ (SNEPointNet++) was developed for semantic segmentation of concrete bridge surface defects (i.e., cracks and spalls). SNEPointNet++ focuses on two main characteristics related to surface defects (i.e., normal vector and depth) and considers the issues related to the data set (i.e., imbalanced data set). The data set, which was collected from four concrete bridges and classified into three classes (cracks, spalls, and no defect), is made available for other researchers. The model was trained and evaluated using 60% and 20% of the data set, respectively. Testing on the remaining part of the data set resulted in 93% and 92% recall for cracks and spalls, respectively. Spalls of the segments deeper than 7 cm (severe spalls) can be detected with 99% recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xl完成签到,获得积分10
刚刚
1秒前
1秒前
俏皮绿蓉完成签到,获得积分10
2秒前
烟花应助野心优雅采纳,获得10
3秒前
思源应助346952262采纳,获得10
3秒前
3秒前
zhao发布了新的文献求助10
3秒前
zozo发布了新的文献求助30
5秒前
李爱国应助一条热带鱼采纳,获得10
6秒前
Lucas应助嘴巴张大一点采纳,获得10
6秒前
6秒前
李霞发布了新的文献求助10
6秒前
研友_VZG7GZ应助梨llll采纳,获得10
6秒前
奶萌兔兔酱完成签到,获得积分10
7秒前
8秒前
一个发布了新的文献求助10
8秒前
852应助克罗地亚哇咔咔采纳,获得10
8秒前
HE发布了新的文献求助10
10秒前
隐形曼青应助张滢蕊采纳,获得10
10秒前
12秒前
鸣笛应助111采纳,获得30
12秒前
oh应助zhudaxia采纳,获得10
12秒前
13秒前
机智幻嫣发布了新的文献求助20
13秒前
13秒前
zho应助kk采纳,获得10
14秒前
喜悦语堂发布了新的文献求助10
16秒前
在水一方应助理理理理采纳,获得10
16秒前
17秒前
17秒前
大力不弱发布了新的文献求助10
18秒前
1900发布了新的文献求助10
19秒前
桐桐应助ljz采纳,获得10
20秒前
21秒前
21秒前
21秒前
23秒前
周钦发布了新的文献求助10
24秒前
张滢蕊发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070