Point Cloud–Based Concrete Surface Defect Semantic Segmentation

点云 分割 桥(图论) 计算机科学 激光雷达 集合(抽象数据类型) 云计算 数据集 测距 点(几何) 人工智能 计算机视觉 数据挖掘 结构工程 遥感 工程类 地质学 几何学 数学 医学 电信 内科学 程序设计语言 操作系统
作者
Neshat Bolourian,Majid Nasrollahi,Fardin Bahreini,Amin Hammad
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (2) 被引量:12
标识
DOI:10.1061/jccee5.cpeng-5009
摘要

Visual inspection is one of the main approaches for annual bridge inspection. Light detection and ranging (LiDAR) scanning is a new technology, which is beneficial because it collects the point clouds and the third dimension of the scanned objects. Deep learning (DL)-based methods have attracted researchers' attention for concrete surface defect detection. However, no point cloud–based DL method currently is available for semantic segmentation of bridge surface defects without converting the data set into other representations, which results in increasing the size of the data set. Moreover, most of the current point cloud–based concrete surface defect detection methods focus on only one type of defect. On the other hand, a data set plays a key role in DL. Therefore, the lack of publicly available point cloud data sets for bridge surface defects is one of the reasons for the lack of studies in this area. To address these issues, this paper created a publicly available point cloud data set for concrete bridge surface defect detection, and developed a point cloud–based semantic segmentation DL method to detect different types of concrete surface defects. Surface Normal Enhanced PointNet++ (SNEPointNet++) was developed for semantic segmentation of concrete bridge surface defects (i.e., cracks and spalls). SNEPointNet++ focuses on two main characteristics related to surface defects (i.e., normal vector and depth) and considers the issues related to the data set (i.e., imbalanced data set). The data set, which was collected from four concrete bridges and classified into three classes (cracks, spalls, and no defect), is made available for other researchers. The model was trained and evaluated using 60% and 20% of the data set, respectively. Testing on the remaining part of the data set resulted in 93% and 92% recall for cracks and spalls, respectively. Spalls of the segments deeper than 7 cm (severe spalls) can be detected with 99% recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿色心情完成签到 ,获得积分10
6秒前
三脸茫然完成签到 ,获得积分10
10秒前
yinhe完成签到 ,获得积分10
13秒前
年轻的醉冬完成签到 ,获得积分10
17秒前
future完成签到 ,获得积分10
19秒前
王kk完成签到 ,获得积分10
21秒前
xue112完成签到 ,获得积分10
22秒前
爱爱完成签到 ,获得积分10
24秒前
NCS完成签到,获得积分10
30秒前
雪莉完成签到 ,获得积分10
31秒前
mrwang完成签到 ,获得积分10
34秒前
执着夏山完成签到,获得积分10
36秒前
lixinyue完成签到 ,获得积分10
39秒前
酷波er应助栀初采纳,获得10
54秒前
小憨憨完成签到 ,获得积分10
1分钟前
1分钟前
guoguo完成签到 ,获得积分10
1分钟前
镜月完成签到 ,获得积分10
1分钟前
栀初发布了新的文献求助10
1分钟前
肯德鸭应助科研通管家采纳,获得600
1分钟前
蛋妮完成签到 ,获得积分10
1分钟前
栀初完成签到,获得积分10
1分钟前
theo完成签到 ,获得积分10
1分钟前
liberation完成签到 ,获得积分10
1分钟前
Coffey完成签到 ,获得积分10
1分钟前
泡泡茶壶o完成签到 ,获得积分10
1分钟前
1分钟前
六一儿童节完成签到 ,获得积分10
1分钟前
AA发布了新的文献求助10
1分钟前
等待戈多发布了新的文献求助10
1分钟前
伯爵完成签到 ,获得积分10
1分钟前
dolabmu完成签到 ,获得积分10
1分钟前
orixero应助阿俊1212采纳,获得10
1分钟前
AA完成签到,获得积分10
1分钟前
柳觅夏完成签到,获得积分10
1分钟前
等待戈多完成签到,获得积分10
1分钟前
widesky777完成签到 ,获得积分0
2分钟前
今天要学习完成签到 ,获得积分10
2分钟前
tesla完成签到 ,获得积分10
2分钟前
科目三应助快醒醒啊采纳,获得10
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139630
求助须知:如何正确求助?哪些是违规求助? 2790514
关于积分的说明 7795445
捐赠科研通 2446977
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176