Point Cloud–Based Concrete Surface Defect Semantic Segmentation

点云 分割 桥(图论) 计算机科学 激光雷达 集合(抽象数据类型) 云计算 数据集 测距 点(几何) 人工智能 计算机视觉 数据挖掘 结构工程 遥感 工程类 地质学 几何学 数学 电信 医学 操作系统 内科学 程序设计语言
作者
Neshat Bolourian,Majid Nasrollahi,Fardin Bahreini,Amin Hammad
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (2) 被引量:36
标识
DOI:10.1061/jccee5.cpeng-5009
摘要

Visual inspection is one of the main approaches for annual bridge inspection. Light detection and ranging (LiDAR) scanning is a new technology, which is beneficial because it collects the point clouds and the third dimension of the scanned objects. Deep learning (DL)-based methods have attracted researchers' attention for concrete surface defect detection. However, no point cloud–based DL method currently is available for semantic segmentation of bridge surface defects without converting the data set into other representations, which results in increasing the size of the data set. Moreover, most of the current point cloud–based concrete surface defect detection methods focus on only one type of defect. On the other hand, a data set plays a key role in DL. Therefore, the lack of publicly available point cloud data sets for bridge surface defects is one of the reasons for the lack of studies in this area. To address these issues, this paper created a publicly available point cloud data set for concrete bridge surface defect detection, and developed a point cloud–based semantic segmentation DL method to detect different types of concrete surface defects. Surface Normal Enhanced PointNet++ (SNEPointNet++) was developed for semantic segmentation of concrete bridge surface defects (i.e., cracks and spalls). SNEPointNet++ focuses on two main characteristics related to surface defects (i.e., normal vector and depth) and considers the issues related to the data set (i.e., imbalanced data set). The data set, which was collected from four concrete bridges and classified into three classes (cracks, spalls, and no defect), is made available for other researchers. The model was trained and evaluated using 60% and 20% of the data set, respectively. Testing on the remaining part of the data set resulted in 93% and 92% recall for cracks and spalls, respectively. Spalls of the segments deeper than 7 cm (severe spalls) can be detected with 99% recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夕夜完成签到,获得积分10
刚刚
科研通AI6应助shining采纳,获得10
1秒前
咸奶兔丝完成签到,获得积分10
1秒前
HJJHJH发布了新的文献求助10
1秒前
1秒前
啦啦应助彩虹小马采纳,获得10
2秒前
852应助coolplex采纳,获得10
2秒前
李健应助LeeFY采纳,获得10
2秒前
希望天下0贩的0应助hhh采纳,获得10
2秒前
yang完成签到 ,获得积分10
2秒前
斯文败类应助諵来北往采纳,获得10
3秒前
桐桐应助celine采纳,获得10
3秒前
盲点完成签到,获得积分10
3秒前
4秒前
欢喜的火龙果完成签到,获得积分10
4秒前
MX120251336发布了新的文献求助10
4秒前
玩命的语蝶完成签到,获得积分10
5秒前
完美世界应助Yoo.采纳,获得10
5秒前
5秒前
NexusExplorer应助FlipFlops采纳,获得10
6秒前
负责蜜蜂发布了新的文献求助10
6秒前
HOAN应助踏雾采纳,获得50
6秒前
6秒前
hahahah发布了新的文献求助20
7秒前
7秒前
我很忙完成签到 ,获得积分10
7秒前
7秒前
FashionBoy应助山鸡采纳,获得10
8秒前
ww发布了新的文献求助10
8秒前
胡涂涂发布了新的文献求助10
8秒前
sunyanghu369发布了新的文献求助10
9秒前
9秒前
10秒前
彩虹小马完成签到,获得积分10
10秒前
11秒前
田様应助热心的易烟采纳,获得10
11秒前
欢呼的烙完成签到,获得积分10
11秒前
wanci应助研友_LjDyNZ采纳,获得20
11秒前
刘佳恬发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041