Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018

全国健康与营养检查调查 冠心病 尿 环境卫生 环境化学 化学 医学 内科学 无机化学 人口 有机化学
作者
Xi Li,Yang Zhao,Dongdong Zhang,Lei Kuang,Hao Huang,Weiling Chen,Xueru Fu,Yuying Wu,Tian-Ze Li,Jinli Zhang,Lijun Yuan,Huifang Hu,Yu Liu,Ming Zhang,Fulan Hu,Xizhuo Sun,Dongsheng Hu
出处
期刊:Chemosphere [Elsevier BV]
卷期号:311: 137039-137039 被引量:69
标识
DOI:10.1016/j.chemosphere.2022.137039
摘要

Limited information is available on the links between heavy metals' exposure and coronary heart disease (CHD). We aim to establish an efficient and explainable machine learning (ML) model that associates heavy metals' exposure with CHD identification. Our datasets for investigating the associations between heavy metals and CHD were sourced from the US National Health and Nutrition Examination Survey (US NHANES, 2003-2018). Five ML models were established to identify CHD by heavy metals' exposure. Further, 11 discrimination characteristics were used to test the strength of the models. The optimally performing model was selected for identification. Finally, the SHapley Additive exPlanations (SHAP) tool was used for interpreting the features to visualize the selected model's decision-making capacity. In total, 12,554 participants were eligible for this study. The best performing random forest classifier (RF) based on 13 heavy metals to identify CHD was chosen (AUC: 0.827; 95%CI: 0.777-0.877; accuracy: 95.9%). SHAP values indicated that cesium (1.62), thallium (1.17), antimony (1.63), dimethylarsonic acid (0.91), barium (0.76), arsenous acid (0.79), total arsenic (0.01) in urine, and lead (3.58) and cadmium (4.66) in blood positively contributed to the model, while cobalt (-0.15), cadmium (-2.93), and uranium (-0.13) in urine negatively contributed to the model. The RF model was efficient, accurate, and robust in identifying an association between heavy metals' exposure and CHD among US NHANES 2003-2018 participants. Cesium, thallium, antimony, dimethylarsonic acid, barium, arsenous acid, and total arsenic in urine, and lead and cadmium in blood show positive relationships with CHD, while cobalt, cadmium, and uranium in urine show negative relationships with CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄冷桔完成签到,获得积分10
刚刚
龚幻梦发布了新的文献求助10
1秒前
3秒前
4秒前
年轻寻真发布了新的文献求助10
5秒前
小马甲应助活泼的梨愁采纳,获得10
5秒前
香蕉觅云应助含蓄冷桔采纳,获得10
7秒前
8秒前
zho发布了新的文献求助10
10秒前
冷傲的xu完成签到,获得积分10
10秒前
wanci应助PhDshi采纳,获得10
10秒前
00完成签到 ,获得积分10
10秒前
12秒前
kkkk完成签到,获得积分10
13秒前
14秒前
飘柔666发布了新的文献求助10
17秒前
18秒前
18秒前
隐形曼青应助gaga采纳,获得10
19秒前
21秒前
笑点低的铁身完成签到 ,获得积分10
21秒前
22秒前
肥猪发布了新的文献求助10
23秒前
24秒前
慕青应助自然的致远采纳,获得10
25秒前
linkman发布了新的文献求助30
27秒前
zho发布了新的文献求助10
28秒前
PlightG关注了科研通微信公众号
29秒前
RR完成签到,获得积分10
29秒前
研途完成签到,获得积分10
32秒前
33秒前
河马完成签到,获得积分10
34秒前
35秒前
愉快的钢铁侠完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
36秒前
Vision820完成签到,获得积分10
37秒前
Dado完成签到,获得积分10
38秒前
lili发布了新的文献求助10
38秒前
共享精神应助彩色烧鹅采纳,获得10
40秒前
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010600
求助须知:如何正确求助?哪些是违规求助? 3550359
关于积分的说明 11305499
捐赠科研通 3284744
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499