Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018

全国健康与营养检查调查 冠心病 尿 环境卫生 环境化学 化学 医学 内科学 无机化学 人口 有机化学
作者
Xi Li,Yang Zhao,Dongdong Zhang,Lei Kuang,Hao Huang,Weiling Chen,Xueru Fu,Yuying Wu,Tian-Ze Li,Jinli Zhang,Lijun Yuan,Huifang Hu,Yu Liu,Ming Zhang,Fulan Hu,Xizhuo Sun,Dongsheng Hu
出处
期刊:Chemosphere [Elsevier]
卷期号:311 (Pt 1): 137039-137039 被引量:111
标识
DOI:10.1016/j.chemosphere.2022.137039
摘要

Limited information is available on the links between heavy metals' exposure and coronary heart disease (CHD). We aim to establish an efficient and explainable machine learning (ML) model that associates heavy metals' exposure with CHD identification. Our datasets for investigating the associations between heavy metals and CHD were sourced from the US National Health and Nutrition Examination Survey (US NHANES, 2003-2018). Five ML models were established to identify CHD by heavy metals' exposure. Further, 11 discrimination characteristics were used to test the strength of the models. The optimally performing model was selected for identification. Finally, the SHapley Additive exPlanations (SHAP) tool was used for interpreting the features to visualize the selected model's decision-making capacity. In total, 12,554 participants were eligible for this study. The best performing random forest classifier (RF) based on 13 heavy metals to identify CHD was chosen (AUC: 0.827; 95%CI: 0.777-0.877; accuracy: 95.9%). SHAP values indicated that cesium (1.62), thallium (1.17), antimony (1.63), dimethylarsonic acid (0.91), barium (0.76), arsenous acid (0.79), total arsenic (0.01) in urine, and lead (3.58) and cadmium (4.66) in blood positively contributed to the model, while cobalt (-0.15), cadmium (-2.93), and uranium (-0.13) in urine negatively contributed to the model. The RF model was efficient, accurate, and robust in identifying an association between heavy metals' exposure and CHD among US NHANES 2003-2018 participants. Cesium, thallium, antimony, dimethylarsonic acid, barium, arsenous acid, and total arsenic in urine, and lead and cadmium in blood show positive relationships with CHD, while cobalt, cadmium, and uranium in urine show negative relationships with CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chaiyuan完成签到 ,获得积分0
1秒前
mong完成签到,获得积分10
1秒前
1秒前
正直的半梅完成签到,获得积分10
2秒前
黑白风发布了新的文献求助30
4秒前
神勇语柳完成签到,获得积分10
4秒前
xiaoxixixier完成签到 ,获得积分10
4秒前
科研通AI6应助xyy采纳,获得30
5秒前
大气早晨发布了新的文献求助10
5秒前
Ava应助wang1030采纳,获得10
7秒前
冰激凌发布了新的文献求助10
8秒前
8秒前
胆大璐完成签到 ,获得积分10
9秒前
科研通AI2S应助阔达皮卡丘采纳,获得10
10秒前
10秒前
完美世界应助vily采纳,获得10
10秒前
奶油蜜豆卷完成签到,获得积分10
11秒前
lijiaoyang完成签到,获得积分10
12秒前
Diana完成签到,获得积分10
12秒前
Hello应助hbhbj采纳,获得10
12秒前
12秒前
懵懂小尉完成签到,获得积分10
13秒前
zw发布了新的文献求助10
14秒前
14秒前
JamesPei应助那都通采纳,获得10
15秒前
乐乐应助嗡嗡嗡采纳,获得10
15秒前
泡芙完成签到,获得积分10
16秒前
17秒前
温暖香菱完成签到,获得积分10
17秒前
18秒前
苹果完成签到,获得积分10
18秒前
ruohanyu完成签到 ,获得积分10
18秒前
如风随水发布了新的文献求助10
19秒前
NexusExplorer应助ww采纳,获得10
19秒前
19秒前
19秒前
ssy发布了新的文献求助20
20秒前
WANJCE发布了新的文献求助10
21秒前
Aaron完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838