亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018

全国健康与营养检查调查 冠心病 尿 环境卫生 环境化学 化学 医学 内科学 无机化学 人口 有机化学
作者
Xi Li,Yang Zhao,Dongdong Zhang,Lei Kuang,Hao Huang,Weiling Chen,Xueru Fu,Yuying Wu,Tian-Ze Li,Jinli Zhang,Lijun Yuan,Huifang Hu,Yu Liu,Ming Zhang,Fulan Hu,Xizhuo Sun,Dongsheng Hu
出处
期刊:Chemosphere [Elsevier]
卷期号:311 (Pt 1): 137039-137039 被引量:111
标识
DOI:10.1016/j.chemosphere.2022.137039
摘要

Limited information is available on the links between heavy metals' exposure and coronary heart disease (CHD). We aim to establish an efficient and explainable machine learning (ML) model that associates heavy metals' exposure with CHD identification. Our datasets for investigating the associations between heavy metals and CHD were sourced from the US National Health and Nutrition Examination Survey (US NHANES, 2003-2018). Five ML models were established to identify CHD by heavy metals' exposure. Further, 11 discrimination characteristics were used to test the strength of the models. The optimally performing model was selected for identification. Finally, the SHapley Additive exPlanations (SHAP) tool was used for interpreting the features to visualize the selected model's decision-making capacity. In total, 12,554 participants were eligible for this study. The best performing random forest classifier (RF) based on 13 heavy metals to identify CHD was chosen (AUC: 0.827; 95%CI: 0.777-0.877; accuracy: 95.9%). SHAP values indicated that cesium (1.62), thallium (1.17), antimony (1.63), dimethylarsonic acid (0.91), barium (0.76), arsenous acid (0.79), total arsenic (0.01) in urine, and lead (3.58) and cadmium (4.66) in blood positively contributed to the model, while cobalt (-0.15), cadmium (-2.93), and uranium (-0.13) in urine negatively contributed to the model. The RF model was efficient, accurate, and robust in identifying an association between heavy metals' exposure and CHD among US NHANES 2003-2018 participants. Cesium, thallium, antimony, dimethylarsonic acid, barium, arsenous acid, and total arsenic in urine, and lead and cadmium in blood show positive relationships with CHD, while cobalt, cadmium, and uranium in urine show negative relationships with CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
1秒前
知性的剑身完成签到,获得积分10
23秒前
DocChen发布了新的文献求助10
51秒前
xiaoqingnian完成签到,获得积分10
1分钟前
小粒橙完成签到 ,获得积分10
1分钟前
猫抓板完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
万能图书馆应助猫抓板采纳,获得10
3分钟前
3分钟前
猫抓板发布了新的文献求助10
3分钟前
路人应助Magali采纳,获得200
3分钟前
小蘑菇应助猫抓板采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
大园完成签到 ,获得积分10
4分钟前
4分钟前
领导范儿应助Magali采纳,获得150
4分钟前
猫抓板发布了新的文献求助10
4分钟前
昭昭完成签到,获得积分10
4分钟前
4分钟前
Magali发布了新的文献求助150
4分钟前
4分钟前
昭昭发布了新的文献求助10
4分钟前
4分钟前
4分钟前
爆米花应助昭昭采纳,获得10
4分钟前
猫抓板发布了新的文献求助10
4分钟前
共享精神应助猫抓板采纳,获得10
5分钟前
5分钟前
猫抓板发布了新的文献求助10
5分钟前
Qing完成签到 ,获得积分10
5分钟前
JamesPei应助猫抓板采纳,获得10
5分钟前
AixLeft完成签到 ,获得积分10
6分钟前
6分钟前
猫抓板发布了新的文献求助10
6分钟前
把饭拼好给你完成签到 ,获得积分10
6分钟前
善学以致用应助猫抓板采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671257
求助须知:如何正确求助?哪些是违规求助? 4912973
关于积分的说明 15134310
捐赠科研通 4830056
什么是DOI,文献DOI怎么找? 2586666
邀请新用户注册赠送积分活动 1540282
关于科研通互助平台的介绍 1498486