Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018

全国健康与营养检查调查 冠心病 尿 环境卫生 环境化学 化学 医学 内科学 无机化学 人口 有机化学
作者
Xi Li,Yang Zhao,Dongdong Zhang,Lei Kuang,Hao Huang,Weiling Chen,Xueru Fu,Yuying Wu,Tian-Ze Li,Jinli Zhang,Lijun Yuan,Huifang Hu,Yu Liu,Ming Zhang,Fulan Hu,Xizhuo Sun,Dongsheng Hu
出处
期刊:Chemosphere [Elsevier]
卷期号:311: 137039-137039 被引量:31
标识
DOI:10.1016/j.chemosphere.2022.137039
摘要

Limited information is available on the links between heavy metals' exposure and coronary heart disease (CHD). We aim to establish an efficient and explainable machine learning (ML) model that associates heavy metals' exposure with CHD identification. Our datasets for investigating the associations between heavy metals and CHD were sourced from the US National Health and Nutrition Examination Survey (US NHANES, 2003-2018). Five ML models were established to identify CHD by heavy metals' exposure. Further, 11 discrimination characteristics were used to test the strength of the models. The optimally performing model was selected for identification. Finally, the SHapley Additive exPlanations (SHAP) tool was used for interpreting the features to visualize the selected model's decision-making capacity. In total, 12,554 participants were eligible for this study. The best performing random forest classifier (RF) based on 13 heavy metals to identify CHD was chosen (AUC: 0.827; 95%CI: 0.777-0.877; accuracy: 95.9%). SHAP values indicated that cesium (1.62), thallium (1.17), antimony (1.63), dimethylarsonic acid (0.91), barium (0.76), arsenous acid (0.79), total arsenic (0.01) in urine, and lead (3.58) and cadmium (4.66) in blood positively contributed to the model, while cobalt (-0.15), cadmium (-2.93), and uranium (-0.13) in urine negatively contributed to the model. The RF model was efficient, accurate, and robust in identifying an association between heavy metals' exposure and CHD among US NHANES 2003-2018 participants. Cesium, thallium, antimony, dimethylarsonic acid, barium, arsenous acid, and total arsenic in urine, and lead and cadmium in blood show positive relationships with CHD, while cobalt, cadmium, and uranium in urine show negative relationships with CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研渣发布了新的文献求助10
1秒前
wu完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
了了了完成签到 ,获得积分20
3秒前
abaaba发布了新的文献求助10
3秒前
Lucas应助小姚采纳,获得10
4秒前
亿元发布了新的文献求助10
5秒前
6秒前
shawn发布了新的文献求助10
6秒前
TTT发布了新的文献求助10
7秒前
8秒前
不许瞎哼哼完成签到 ,获得积分10
10秒前
所所应助积极问晴采纳,获得10
10秒前
11秒前
11秒前
英俊的铭应助jjb采纳,获得10
11秒前
WUUUU完成签到,获得积分10
11秒前
科研渣完成签到,获得积分10
11秒前
大模型应助13223456采纳,获得10
12秒前
12秒前
嘴嘴完成签到,获得积分10
13秒前
shawn完成签到,获得积分10
13秒前
14秒前
14秒前
鼓励男孩发布了新的文献求助10
16秒前
16秒前
啦啦啦发布了新的文献求助10
16秒前
香蕉晓曼完成签到,获得积分10
18秒前
虚心夏烟完成签到,获得积分10
19秒前
小姚完成签到,获得积分20
19秒前
19秒前
20秒前
20秒前
21秒前
孟半雪发布了新的文献求助30
22秒前
小埋发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023