Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018

全国健康与营养检查调查 冠心病 尿 环境卫生 环境化学 化学 医学 内科学 无机化学 人口 有机化学
作者
Xi Li,Yang Zhao,Dongdong Zhang,Lei Kuang,Hao Huang,Weiling Chen,Xueru Fu,Yuying Wu,Tian-Ze Li,Jinli Zhang,Lijun Yuan,Huifang Hu,Yu Liu,Ming Zhang,Fulan Hu,Xizhuo Sun,Dongsheng Hu
出处
期刊:Chemosphere [Elsevier BV]
卷期号:311: 137039-137039 被引量:85
标识
DOI:10.1016/j.chemosphere.2022.137039
摘要

Limited information is available on the links between heavy metals' exposure and coronary heart disease (CHD). We aim to establish an efficient and explainable machine learning (ML) model that associates heavy metals' exposure with CHD identification. Our datasets for investigating the associations between heavy metals and CHD were sourced from the US National Health and Nutrition Examination Survey (US NHANES, 2003-2018). Five ML models were established to identify CHD by heavy metals' exposure. Further, 11 discrimination characteristics were used to test the strength of the models. The optimally performing model was selected for identification. Finally, the SHapley Additive exPlanations (SHAP) tool was used for interpreting the features to visualize the selected model's decision-making capacity. In total, 12,554 participants were eligible for this study. The best performing random forest classifier (RF) based on 13 heavy metals to identify CHD was chosen (AUC: 0.827; 95%CI: 0.777-0.877; accuracy: 95.9%). SHAP values indicated that cesium (1.62), thallium (1.17), antimony (1.63), dimethylarsonic acid (0.91), barium (0.76), arsenous acid (0.79), total arsenic (0.01) in urine, and lead (3.58) and cadmium (4.66) in blood positively contributed to the model, while cobalt (-0.15), cadmium (-2.93), and uranium (-0.13) in urine negatively contributed to the model. The RF model was efficient, accurate, and robust in identifying an association between heavy metals' exposure and CHD among US NHANES 2003-2018 participants. Cesium, thallium, antimony, dimethylarsonic acid, barium, arsenous acid, and total arsenic in urine, and lead and cadmium in blood show positive relationships with CHD, while cobalt, cadmium, and uranium in urine show negative relationships with CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
h3rry驳回了Orange应助
2秒前
odell完成签到,获得积分10
3秒前
左白易完成签到,获得积分10
3秒前
4秒前
xiaoxuesheng发布了新的文献求助10
4秒前
4秒前
parallel完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
晨晨学长完成签到,获得积分10
7秒前
科研通AI6应助叶弥采纳,获得10
7秒前
lh发布了新的文献求助10
7秒前
7秒前
9秒前
parallel发布了新的文献求助10
9秒前
hananq发布了新的文献求助10
9秒前
9秒前
一川完成签到,获得积分10
10秒前
晨晨学长发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助50
11秒前
11秒前
12秒前
jimmyhui完成签到,获得积分10
15秒前
16秒前
16秒前
蒋蒋蒋发布了新的文献求助10
16秒前
hananq完成签到,获得积分20
17秒前
点点点发布了新的文献求助10
17秒前
LaTeXer应助科研通管家采纳,获得30
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
科研牛马应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
LaTeXer应助科研通管家采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003151
求助须知:如何正确求助?哪些是违规求助? 4248042
关于积分的说明 13235023
捐赠科研通 4046979
什么是DOI,文献DOI怎么找? 2214109
邀请新用户注册赠送积分活动 1224180
关于科研通互助平台的介绍 1144425