Novel hybrid machine learning models including support vector machine with meta-heuristic algorithms in predicting unconfined compressive strength of organic soils stabilised with cement and lime

抗压强度 石灰 支持向量机 粒子群优化 模拟退火 算法 预测建模 数学 机器学习 材料科学 数学优化 工程类 计算机科学 复合材料 冶金
作者
Trinh Quoc Ngo,Linh Quy Nguyen,Van Quan Tran
出处
期刊:International Journal of Pavement Engineering [Taylor & Francis]
卷期号:24 (2) 被引量:17
标识
DOI:10.1080/10298436.2022.2136374
摘要

Each type of soil has different optimal soil stabilisation additive content. To design the optimal soil stabilisation component, reliable and efficient models are required. The study proposes the Machine Learning (ML) model Support Vector Regression (SVR) to predict the Unconfined Compressive Strength (UCS) of stabilised soil. To be able to deliver optimal performance, five metaheuristic algorithms: Simulated Annealing (SA), Random Restart Hill Climbing (RRHC), Particle swarm optimisation (PSO), Hunger Games Search (HGS) and Slime Mould Algorithm (SMA) are integrated with the SVR model. To explore the effect of the number of inputs on the model's performance, the data was divided into two scenarios of input variable number. ML models are evaluated by K-Fold and numerical indicators R2, RMSE and MAE. The results show that in Scenario 1, the SVR-HGS model has a higher predictive performance than other predictive models. While in Scenario 2, the SVR-PSO model gives better performance than the remaining predictive models. SHapley Additive exPlanation (SHAP) and Partial Dependence Plots 2D (PDP) were used to gain insight into the effects of variables on UCS, and the effects of cement and lime on the variables. Obtaining variables that have an important influence on the variation of stabilised soil UCS, in which cement is considered the most significant variable. The detection of A-line value is a relatively important predictor of UCS. At a suitable A-line value, it is possible to reduce the content of chemical stabilising agents (cement, lime) while maintaining the UCS value at a relative threshold.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZS0901发布了新的文献求助30
1秒前
蛋黄啵啵完成签到 ,获得积分10
2秒前
材1完成签到 ,获得积分10
2秒前
liwu完成签到 ,获得积分10
3秒前
清脆如娆完成签到 ,获得积分10
3秒前
dd完成签到,获得积分10
3秒前
源圈圈完成签到 ,获得积分10
4秒前
简墨完成签到,获得积分10
5秒前
无所谓的啦完成签到,获得积分10
5秒前
明理萃完成签到 ,获得积分10
5秒前
5秒前
cai完成签到 ,获得积分10
5秒前
麦麦脆汁鸡完成签到 ,获得积分10
6秒前
qianlan完成签到,获得积分10
6秒前
ZS0901完成签到,获得积分10
8秒前
9秒前
Xiaoxiao完成签到,获得积分0
10秒前
科研通AI5应助鳗鱼绿蝶采纳,获得10
10秒前
斯文败类应助紧张的蝴蝶采纳,获得10
10秒前
gyx完成签到 ,获得积分10
11秒前
ztlooo发布了新的文献求助10
12秒前
12秒前
Ternura发布了新的文献求助10
14秒前
HXL完成签到 ,获得积分10
14秒前
坦率的世开完成签到,获得积分10
17秒前
全一斩完成签到,获得积分10
17秒前
zhangshuo123发布了新的文献求助10
18秒前
18秒前
成就的笑南完成签到 ,获得积分10
18秒前
负责石头完成签到,获得积分10
18秒前
21秒前
平常的羊完成签到 ,获得积分10
21秒前
22秒前
奶油布丁完成签到,获得积分10
22秒前
Ternura完成签到,获得积分10
23秒前
nibaba完成签到,获得积分10
23秒前
爱吃火锅的lulu完成签到 ,获得积分10
23秒前
25秒前
达da完成签到,获得积分10
26秒前
Lenacici完成签到,获得积分10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761109
求助须知:如何正确求助?哪些是违规求助? 3305034
关于积分的说明 10131962
捐赠科研通 3019022
什么是DOI,文献DOI怎么找? 1657921
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754604