A novel genome sequence ofJasminum sambachelps uncover the molecular mechanism underlying the accumulation of jasmonates

生物 花瓣 基因组 转录组 基因 水杨酸 遗传学 计算生物学 植物 基因表达
作者
Min Xu,Qiang Gao,Mengwei Jiang,Wenling Wang,Juan Hu,Xiaojun Chang,Dinggao Liu,Yuwei Liang,Yifan Jiang,Fei Chen,Chuhao Li,Haoran Huang,Feng Chen,Fan Li,Robert N. Trigiano,Jihua Wang,Chen Jiao,Xiaofan Zhou,Liangsheng Zhang
出处
期刊:Journal of Experimental Botany [Oxford University Press]
卷期号:74 (4): 1275-1290 被引量:3
标识
DOI:10.1093/jxb/erac464
摘要

Jasminum sambac is a well-known plant for its attractive and exceptional fragrance, the flowers of which are used to produce scented tea. Jasmonate (JA), an important plant hormone was first identified in Jasminum species. Jasmine plants contain abundant JA naturally, of which the molecular mechanisms of synthesis and accumulation are not clearly understood. Here, we report a telomere-to-telomere consensus assembly of a double-petal J. sambac genome along with two haplotype-resolved genomes. We found that gain-and-loss, positive selection, and allelic specific expression of aromatic volatile-related genes contributed to the stronger flower fragrance in double-petal J. sambac compared with single- and multi-petal jasmines. Through comprehensive comparative genomic, transcriptomic, and metabolomic analyses of double-petal J. sambac, we revealed the genetic basis of the production of aromatic volatiles and salicylic acid (SA), and the accumulation of JA under non-stress conditions. We identified several key genes associated with JA biosynthesis, and their non-stress related activities lead to extraordinarily high concentrations of JA in tissues. High JA synthesis coupled with low degradation in J. sambac results in accumulation of high JA under typical environmental conditions, similar to the accumulation mechanism of SA. This study offers important insights into the biology of J. sambac, and provides valuable genomic resources for further utilization of natural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
quanhua完成签到,获得积分10
刚刚
柴六斤发布了新的文献求助10
刚刚
科研通AI2S应助koial采纳,获得10
1秒前
1秒前
1秒前
星辰大海应助云胡不喜采纳,获得10
2秒前
是滴是滴发布了新的文献求助10
3秒前
3秒前
阿靖完成签到,获得积分10
3秒前
4秒前
cyw完成签到,获得积分10
5秒前
pengpeng完成签到,获得积分20
5秒前
Owen应助挑片岛屿采纳,获得10
5秒前
6秒前
CodeCraft应助11采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
搜集达人应助panjy采纳,获得30
7秒前
Lermta完成签到,获得积分10
9秒前
Ava应助ze采纳,获得10
9秒前
小~杰完成签到,获得积分10
9秒前
深情安青应助愉快的千亦采纳,获得10
10秒前
11秒前
11秒前
Lermta发布了新的文献求助10
12秒前
忆梦完成签到 ,获得积分10
12秒前
13秒前
13秒前
云胡不喜完成签到,获得积分10
13秒前
sanyecai发布了新的文献求助10
13秒前
13秒前
Ava应助北风采纳,获得10
14秒前
帆帆发布了新的文献求助10
14秒前
充电宝应助是滴是滴采纳,获得10
14秒前
14秒前
Leonardi应助Holiday采纳,获得200
15秒前
小冯发布了新的文献求助30
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144133
求助须知:如何正确求助?哪些是违规求助? 2795764
关于积分的说明 7816509
捐赠科研通 2451813
什么是DOI,文献DOI怎么找? 1304705
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419