系统间交叉
荧光
计算机科学
精简计算指令集
材料科学
物理
计算机硬件
激发态
指令集
光学
原子物理学
单重态
作者
Ping Li,Zijie Wang,Wenjing Li,Jie Yuan,Runfeng Chen
标识
DOI:10.1021/acs.jpclett.2c02735
摘要
Efficient intersystem crossing (ISC) and reverse ISC (RISC) processes are of vital significance for thermally activated delayed fluorescence (TADF) materials to achieve 100% internal quantum efficiency. However, it is challenging to rapidly predict the ISC/RISC rates of large amounts of TADF materials and screen promising candidates because of their flexible molecular design. Here, we perform virtual screening of 564 candidates constructed from 20 unique building blocks linking in D-A, D-π-A, and D-A-D (D') configurations using the established machine learning models of GBRT and RF-GBRT-KNN with the Pearson's correlation coefficients (r) of 0.89 and 0.82, respectively. Novel descriptors of ΔELL, Polar, and ΔETT for predicting ISC/RISC rates were proposed, and nine TADF molecules with the predicted ISC and RISC rates of >7 × 107 and 2 × 105 s-1, respectively, were revealed. We provide an efficient approach to predicting ISC and RISC rates of TADF molecules on a large scale, elucidating important building blocks and architectures to design high-performance optoelectronic materials for experimental explorations.
科研通智能强力驱动
Strongly Powered by AbleSci AI