2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens

生物传感器 纳米技术 癌症检测 癌症生物标志物 材料科学 癌症 计算机科学 医学 内科学
作者
Adriel Yan Sheng Tan,Newton Well Lo,Faliang Cheng,Min Zhang,Michelle T.T. Tan,Sivakumar Manickam,Kasturi Muthoosamy
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:219: 114811-114811 被引量:43
标识
DOI:10.1016/j.bios.2022.114811
摘要

Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
仲夏夜之梦完成签到,获得积分10
4秒前
calm完成签到,获得积分10
5秒前
吃猫的鱼发布了新的文献求助10
10秒前
碧蓝的黑猫完成签到,获得积分10
11秒前
小二郎应助吱吱采纳,获得10
12秒前
GGbond完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
18秒前
zhaoming完成签到 ,获得积分10
19秒前
zzw完成签到,获得积分10
19秒前
香蕉觅云应助娇气的背包采纳,获得10
20秒前
junhaowang完成签到 ,获得积分10
21秒前
搜集达人应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
chelsea完成签到,获得积分10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
TaoJ应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
23秒前
23秒前
yyyyyyyyjt发布了新的文献求助10
24秒前
chenxuuu发布了新的文献求助10
24秒前
砼砼发布了新的文献求助10
24秒前
yuan完成签到,获得积分10
25秒前
xiaokalami发布了新的文献求助10
26秒前
杨雨帆发布了新的文献求助10
27秒前
yuan发布了新的文献求助10
29秒前
30秒前
30秒前
梅倪完成签到,获得积分10
31秒前
华仔应助777采纳,获得10
32秒前
羊羊完成签到 ,获得积分10
32秒前
鱼鱼完成签到 ,获得积分10
33秒前
35秒前
李巧儿发布了新的文献求助10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967