Causal-Trivial Attention Graph Neural Network for Fault Diagnosis of Complex Industrial Processes

计算机科学 人工神经网络 分类器(UML) 因果模型 一般化 图形 人工智能 数据挖掘 理论计算机科学 机器学习 数学 统计 数学分析
作者
Hao Wang,Ruonan Liu,Steven X. Ding,Qinghua Hu,Zengxiang Li,Hongkuan Zhou
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1987-1996 被引量:1
标识
DOI:10.1109/tii.2023.3282979
摘要

In modern industrial systems, components have complex interactions with each other, which makes it become a challenging task to identify the operational conditions of industrial systems. Considering that an industrial system, the embedded components and their interactions can be expressed as nodes and edges in a graph, respectively. Therefore, graph representation algorithms are powerful tools for fault diagnosis of industrial systems. As one of the most commonly used graph representation algorithms, Graph Neural Networks (GNN) mainly follow the law of “learning to attend”. GNN extract training data features, learn the statistical correlations between features and labels, resulting in the attended graph favoring for accessing non-causal features as a shortcut for prediction. This shortcut feature is unstable and depends on the data distribution characteristics in the training dataset, which reduces the generalization ability of the classifier. By performing the causal analysis of GNN modeling for graph representation, the results show that shortcut features act as confounding factors between causal features and predictions, causing classifiers to learn wrong correlations. Therefore, to discover patterns of causality and weaken the confounding effects of shortcut features, a Causal-Trivial Attention Graph Neural Network (CTA-GNN) strategy is proposed. Firstly, node and edge representations are given by estimating soft masks. Secondly, through disentanglement, both causal features and shortcut features are obtained from the graph. Thirdly, the backdoor adjustment of the causal theory is parameterized to combine each causal feature with a variety of shortcut features. Finally, comparative experiments on the Three-Phase Flow Facility (TFF) dataset illustrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紧张的梦岚应助开放雁丝采纳,获得20
刚刚
淇淇怪怪发布了新的文献求助10
1秒前
深情安青应助呼叫554采纳,获得30
1秒前
zhuiyu完成签到,获得积分10
1秒前
鲜艳的手链完成签到,获得积分10
1秒前
知性的以筠完成签到,获得积分10
2秒前
leiyang49完成签到,获得积分10
2秒前
2秒前
李小伟完成签到,获得积分10
3秒前
3秒前
铁匠发布了新的文献求助10
4秒前
Jupiter完成签到,获得积分10
4秒前
zsqqqqq完成签到,获得积分10
6秒前
MADKAI发布了新的文献求助10
6秒前
二二二发布了新的文献求助10
6秒前
完美世界应助nihil采纳,获得10
7秒前
7秒前
cd发布了新的文献求助10
7秒前
过时的丹秋完成签到 ,获得积分10
8秒前
8秒前
成就缘分完成签到,获得积分10
8秒前
勤恳的问儿给勤恳的问儿的求助进行了留言
8秒前
一米阳光完成签到,获得积分10
9秒前
深情安青应助April采纳,获得10
9秒前
9秒前
9秒前
淇淇怪怪完成签到,获得积分10
10秒前
11秒前
小蘑菇应助二二二采纳,获得10
11秒前
11秒前
最牛的菠萝隐士完成签到,获得积分10
11秒前
zhang完成签到 ,获得积分10
12秒前
灵犀完成签到,获得积分10
12秒前
ttssooe发布了新的文献求助10
12秒前
CipherSage应助Ll采纳,获得10
13秒前
13秒前
千里发布了新的文献求助10
13秒前
Mia发布了新的文献求助20
14秒前
女神金发布了新的文献求助60
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672