Collaborative Transfer Network for Multi-Classification of Breast Cancer Histopathological Images

计算机科学 乳腺癌 人工智能 学习迁移 模式识别(心理学) 特征(语言学) 残余物 人工神经网络 深度学习 特征提取 一致性(知识库) 机器学习 上下文图像分类 癌症 医学 图像(数学) 算法 内科学 哲学 语言学
作者
Liangliang Liu,Ying Wang,Pei Zhang,Hongbo Qiao,Tong Sun,Hui Zhang,Xue Xu,Hongcai Shang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 110-121 被引量:10
标识
DOI:10.1109/jbhi.2023.3283042
摘要

The incidence of breast cancer is increasing rapidly around the world. Accurate classification of the breast cancer subtype from hematoxylin and eosin images is the key to improve the precision of treatment. However, the high consistency of disease subtypes and uneven distribution of cancer cells seriously affect the performance of multi-classification methods. Furthermore, it is difficult to apply existing classification methods to multiple datasets. In this article, we propose a collaborative transfer network (CTransNet) for multi-classification of breast cancer histopathological images. CTransNet consists of a transfer learning backbone branch, a residual collaborative branch, and a feature fusion module. The transfer learning branch adopts the pre-trained DenseNet structure to extract image features from ImageNet. The residual branch extracts target features from pathological images in a collaborative manner. The feature fusion strategy of optimizing these two branches is used to train and fine-tune CTransNet. Experiments show that CTransNet achieves 98.29% classification accuracy on the public BreaKHis breast cancer dataset, exceeding the performance of state-of-the-art methods. Visual analysis is carried out under the guidance of oncologists. Based on the training parameters of the BreaKHis dataset, CTransNet achieves superior performance on other two public breast cancer datasets (breast-cancer-grade-ICT and ICIAR2018_BACH_Challenge), indicating that CTransNet has good generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小石头完成签到,获得积分20
刚刚
1秒前
所所应助想得开居士采纳,获得30
1秒前
xixixi发布了新的文献求助10
1秒前
lapchin发布了新的文献求助10
2秒前
sjl完成签到,获得积分10
2秒前
3秒前
cxy完成签到,获得积分10
3秒前
3秒前
南吕廿八完成签到,获得积分10
3秒前
000完成签到 ,获得积分10
5秒前
爆米花应助ChenkLuo采纳,获得10
6秒前
7秒前
CiCi完成签到,获得积分10
7秒前
Frank_li发布了新的文献求助10
8秒前
ZZ完成签到 ,获得积分10
8秒前
luo完成签到,获得积分10
9秒前
shuigui56完成签到,获得积分10
9秒前
衢夭完成签到,获得积分10
10秒前
ding应助景笑天采纳,获得10
10秒前
10秒前
Owen应助zdesfsfa采纳,获得10
11秒前
田様应助zhumengyu采纳,获得10
11秒前
乐平KYXK发布了新的文献求助10
13秒前
Fang完成签到,获得积分10
13秒前
Drink完成签到 ,获得积分10
13秒前
完美世界应助易寒采纳,获得10
13秒前
14秒前
15秒前
morenmoyan发布了新的文献求助10
16秒前
情怀应助楪祈爱着集采纳,获得10
17秒前
Irving发布了新的文献求助10
17秒前
芸苔AA完成签到,获得积分10
18秒前
典雅的俊驰应助羊咩咩采纳,获得10
18秒前
Singularity应助羊咩咩采纳,获得10
18秒前
华仔应助任然采纳,获得10
18秒前
巷曲发布了新的文献求助10
19秒前
苗条的问安完成签到,获得积分10
20秒前
脑洞疼应助研友_LOK59L采纳,获得10
20秒前
叶水之完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916