亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-based computer-aided diagnostic system of chest digital tomography synthesis: Demonstrating comparative advantage with X-ray-based AI systems

计算机辅助设计 层析合成 投影(关系代数) 计算机科学 人工智能 计算机视觉 计算机辅助诊断 医学影像学 模式识别(心理学) 医学 算法 工程制图 癌症 乳腺癌 乳腺摄影术 内科学 工程类
作者
Kyungsu Kim,Ju Hwan Lee,Seong Je Oh,Myung Jin Chung
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107643-107643 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107643
摘要

Compared with chest X-ray (CXR) imaging, which is a single image projected from the front of the patient, chest digital tomosynthesis (CDTS) imaging can be more advantageous for lung lesion detection because it acquires multiple images projected from multiple angles of the patient. Various clinical comparative analysis and verification studies have been reported to demonstrate this, but there is no artificial intelligence (AI)-based comparative analysis studies. Existing AI-based computer-aided detection (CAD) systems for lung lesion diagnosis have been developed mainly based on CXR images; however, CAD-based on CDTS, which uses multi-angle images of patients in various directions, has not been proposed and verified for its usefulness compared to CXR-based counterparts.This study develops and tests a CDTS-based AI CAD system to detect lung lesions to demonstrate performance improvements compared to CXR-based AI CAD.We used multiple (e.g., five) projection images as input for the CDTS-based AI model and a single-projection image as input for the CXR-based AI model to compare and evaluate the performance between models. Multiple/single projection input images were obtained by virtual projection on the three-dimensional (3D) stack of computed tomography (CT) slices of each patient's lungs from which the bed area was removed. These multiple images result from shooting from the front and left and right 30/60∘. The projected image captured from the front was used as the input for the CXR-based AI model. The CDTS-based AI model used all five projected images. The proposed CDTS-based AI model consisted of five AI models that received images in each of the five directions, and obtained the final prediction result through an ensemble of five models. Each model used WideResNet-50. To train and evaluate CXR- and CDTS-based AI models, 500 healthy data, 206 tuberculosis data, and 242 pneumonia data were used, and three three-fold cross-validation was applied.The proposed CDTS-based AI CAD system yielded sensitivities of 0.782 and 0.785 and accuracies of 0.895 and 0.837 for the (binary classification) performance of detecting tuberculosis and pneumonia, respectively, against normal subjects. These results show higher performance than the sensitivity of 0.728 and 0.698 and accuracies of 0.874 and 0.826 for detecting tuberculosis and pneumonia through the CXR-based AI CAD, which only uses a single projection image in the frontal direction. We found that CDTS-based AI CAD improved the sensitivity of tuberculosis and pneumonia by 5.4% and 8.7% respectively, compared to CXR-based AI CAD without loss of accuracy.This study comparatively proves that CDTS-based AI CAD technology can improve performance more than CXR. These results suggest that we can enhance the clinical application of CDTS. Our code is available at https://github.com/kskim-phd/CDTS-CAD-P.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野吐司完成签到 ,获得积分10
8秒前
姚老表完成签到,获得积分10
9秒前
SciGPT应助拒绝去偏旁采纳,获得10
9秒前
火星上仰完成签到,获得积分10
21秒前
hzk完成签到,获得积分10
22秒前
41秒前
46秒前
烟消云散完成签到,获得积分10
48秒前
50秒前
英俊的铭应助拒绝去偏旁采纳,获得10
54秒前
小草发布了新的文献求助10
54秒前
54秒前
59秒前
1分钟前
虞美人发布了新的文献求助10
1分钟前
小泽发布了新的文献求助10
1分钟前
搜集达人应助lyy采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
HaCat完成签到,获得积分10
1分钟前
小泽完成签到,获得积分10
2分钟前
Lucas应助HaCat采纳,获得10
2分钟前
2分钟前
拒绝去偏旁完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助HaCat采纳,获得10
2分钟前
FashionBoy应助HaCat采纳,获得10
2分钟前
2分钟前
小草发布了新的文献求助10
2分钟前
xiaodengdream完成签到,获得积分10
3分钟前
长度2到完成签到,获得积分10
3分钟前
xiaodengdream发布了新的文献求助20
3分钟前
AX完成签到,获得积分10
3分钟前
英姑应助勤恳含烟采纳,获得10
3分钟前
虞美人发布了新的文献求助30
3分钟前
科科完成签到 ,获得积分10
3分钟前
ajing完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634708
求助须知:如何正确求助?哪些是违规求助? 4732088
关于积分的说明 14989018
捐赠科研通 4792423
什么是DOI,文献DOI怎么找? 2559546
邀请新用户注册赠送积分活动 1519831
关于科研通互助平台的介绍 1479945