AI-based computer-aided diagnostic system of chest digital tomography synthesis: Demonstrating comparative advantage with X-ray-based AI systems

计算机辅助设计 层析合成 投影(关系代数) 计算机科学 人工智能 计算机视觉 计算机辅助诊断 医学影像学 模式识别(心理学) 医学 算法 工程制图 乳腺摄影术 乳腺癌 工程类 内科学 癌症
作者
Kyungsu Kim,Ju Hwan Lee,Seong Je Oh,Myung Jin Chung
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107643-107643 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107643
摘要

Compared with chest X-ray (CXR) imaging, which is a single image projected from the front of the patient, chest digital tomosynthesis (CDTS) imaging can be more advantageous for lung lesion detection because it acquires multiple images projected from multiple angles of the patient. Various clinical comparative analysis and verification studies have been reported to demonstrate this, but there is no artificial intelligence (AI)-based comparative analysis studies. Existing AI-based computer-aided detection (CAD) systems for lung lesion diagnosis have been developed mainly based on CXR images; however, CAD-based on CDTS, which uses multi-angle images of patients in various directions, has not been proposed and verified for its usefulness compared to CXR-based counterparts.This study develops and tests a CDTS-based AI CAD system to detect lung lesions to demonstrate performance improvements compared to CXR-based AI CAD.We used multiple (e.g., five) projection images as input for the CDTS-based AI model and a single-projection image as input for the CXR-based AI model to compare and evaluate the performance between models. Multiple/single projection input images were obtained by virtual projection on the three-dimensional (3D) stack of computed tomography (CT) slices of each patient's lungs from which the bed area was removed. These multiple images result from shooting from the front and left and right 30/60∘. The projected image captured from the front was used as the input for the CXR-based AI model. The CDTS-based AI model used all five projected images. The proposed CDTS-based AI model consisted of five AI models that received images in each of the five directions, and obtained the final prediction result through an ensemble of five models. Each model used WideResNet-50. To train and evaluate CXR- and CDTS-based AI models, 500 healthy data, 206 tuberculosis data, and 242 pneumonia data were used, and three three-fold cross-validation was applied.The proposed CDTS-based AI CAD system yielded sensitivities of 0.782 and 0.785 and accuracies of 0.895 and 0.837 for the (binary classification) performance of detecting tuberculosis and pneumonia, respectively, against normal subjects. These results show higher performance than the sensitivity of 0.728 and 0.698 and accuracies of 0.874 and 0.826 for detecting tuberculosis and pneumonia through the CXR-based AI CAD, which only uses a single projection image in the frontal direction. We found that CDTS-based AI CAD improved the sensitivity of tuberculosis and pneumonia by 5.4% and 8.7% respectively, compared to CXR-based AI CAD without loss of accuracy.This study comparatively proves that CDTS-based AI CAD technology can improve performance more than CXR. These results suggest that we can enhance the clinical application of CDTS. Our code is available at https://github.com/kskim-phd/CDTS-CAD-P.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热芝完成签到,获得积分10
刚刚
青青发布了新的文献求助10
1秒前
1秒前
lee完成签到,获得积分10
1秒前
秋名山完成签到,获得积分10
1秒前
2秒前
怕孤独的寄真完成签到,获得积分10
2秒前
3秒前
JingMa发布了新的文献求助10
3秒前
可爱邓邓完成签到 ,获得积分10
4秒前
自信白易发布了新的文献求助10
4秒前
xxxHolic41完成签到,获得积分10
5秒前
5秒前
溜溜发布了新的文献求助200
5秒前
JamesPei应助秋秋采纳,获得10
5秒前
wanci应助晓晓来了采纳,获得10
5秒前
5秒前
姜汁完成签到,获得积分10
6秒前
归尘应助秋名山采纳,获得50
6秒前
研ZZ完成签到,获得积分10
6秒前
xingyuwuhen007完成签到,获得积分10
7秒前
温暖的俊驰完成签到,获得积分10
7秒前
天天快乐应助jia采纳,获得10
7秒前
laoben发布了新的文献求助10
9秒前
wang完成签到,获得积分10
9秒前
高兴翠绿发布了新的文献求助10
9秒前
9秒前
悦悦发布了新的文献求助10
9秒前
zzzzz完成签到,获得积分10
10秒前
10秒前
酷波er应助lrl350495627采纳,获得10
10秒前
rong发布了新的文献求助10
11秒前
frenchfriespie完成签到,获得积分10
11秒前
杨欣悦发布了新的文献求助10
11秒前
赵霞完成签到 ,获得积分10
12秒前
鳄鱼不做饿梦完成签到,获得积分10
12秒前
ayu关闭了ayu文献求助
13秒前
jiejie完成签到,获得积分10
13秒前
14秒前
球球啦完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397