亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-based computer-aided diagnostic system of chest digital tomography synthesis: Demonstrating comparative advantage with X-ray-based AI systems

计算机辅助设计 层析合成 投影(关系代数) 计算机科学 人工智能 计算机视觉 计算机辅助诊断 医学影像学 模式识别(心理学) 医学 算法 工程制图 癌症 乳腺癌 乳腺摄影术 内科学 工程类
作者
Kyungsu Kim,Ju Hwan Lee,Seong Je Oh,Myung Jin Chung
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107643-107643 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107643
摘要

Compared with chest X-ray (CXR) imaging, which is a single image projected from the front of the patient, chest digital tomosynthesis (CDTS) imaging can be more advantageous for lung lesion detection because it acquires multiple images projected from multiple angles of the patient. Various clinical comparative analysis and verification studies have been reported to demonstrate this, but there is no artificial intelligence (AI)-based comparative analysis studies. Existing AI-based computer-aided detection (CAD) systems for lung lesion diagnosis have been developed mainly based on CXR images; however, CAD-based on CDTS, which uses multi-angle images of patients in various directions, has not been proposed and verified for its usefulness compared to CXR-based counterparts.This study develops and tests a CDTS-based AI CAD system to detect lung lesions to demonstrate performance improvements compared to CXR-based AI CAD.We used multiple (e.g., five) projection images as input for the CDTS-based AI model and a single-projection image as input for the CXR-based AI model to compare and evaluate the performance between models. Multiple/single projection input images were obtained by virtual projection on the three-dimensional (3D) stack of computed tomography (CT) slices of each patient's lungs from which the bed area was removed. These multiple images result from shooting from the front and left and right 30/60∘. The projected image captured from the front was used as the input for the CXR-based AI model. The CDTS-based AI model used all five projected images. The proposed CDTS-based AI model consisted of five AI models that received images in each of the five directions, and obtained the final prediction result through an ensemble of five models. Each model used WideResNet-50. To train and evaluate CXR- and CDTS-based AI models, 500 healthy data, 206 tuberculosis data, and 242 pneumonia data were used, and three three-fold cross-validation was applied.The proposed CDTS-based AI CAD system yielded sensitivities of 0.782 and 0.785 and accuracies of 0.895 and 0.837 for the (binary classification) performance of detecting tuberculosis and pneumonia, respectively, against normal subjects. These results show higher performance than the sensitivity of 0.728 and 0.698 and accuracies of 0.874 and 0.826 for detecting tuberculosis and pneumonia through the CXR-based AI CAD, which only uses a single projection image in the frontal direction. We found that CDTS-based AI CAD improved the sensitivity of tuberculosis and pneumonia by 5.4% and 8.7% respectively, compared to CXR-based AI CAD without loss of accuracy.This study comparatively proves that CDTS-based AI CAD technology can improve performance more than CXR. These results suggest that we can enhance the clinical application of CDTS. Our code is available at https://github.com/kskim-phd/CDTS-CAD-P.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碗在水中央完成签到 ,获得积分10
5秒前
JamesPei应助alaa采纳,获得10
17秒前
AX完成签到,获得积分10
21秒前
28秒前
35秒前
Rangi发布了新的文献求助10
37秒前
科研通AI2S应助清脆靳采纳,获得10
38秒前
45秒前
DRFANG发布了新的文献求助10
51秒前
任性云朵完成签到 ,获得积分10
53秒前
58秒前
笑点低忆之完成签到 ,获得积分10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
Pluto发布了新的文献求助10
1分钟前
落伍的螃蟹完成签到,获得积分10
1分钟前
小蘑菇应助Xinghui采纳,获得10
1分钟前
bibi完成签到,获得积分10
1分钟前
yzizz完成签到 ,获得积分10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
文欣完成签到 ,获得积分0
1分钟前
善学以致用应助jc哥采纳,获得10
1分钟前
1分钟前
yueying完成签到,获得积分10
1分钟前
情怀应助Pluto采纳,获得10
1分钟前
怡然的扬发布了新的文献求助10
1分钟前
脑洞疼应助阿宝溜溜球采纳,获得10
1分钟前
辰昜完成签到,获得积分10
1分钟前
科研通AI6应助Kate采纳,获得10
1分钟前
科研通AI6应助吐个泡泡采纳,获得10
1分钟前
1分钟前
Wangboyang完成签到,获得积分20
2分钟前
2分钟前
samchen完成签到,获得积分10
2分钟前
HY应助Wangboyang采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
tianfu1899发布了新的文献求助10
2分钟前
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564906
求助须知:如何正确求助?哪些是违规求助? 4649603
关于积分的说明 14689175
捐赠科研通 4591564
什么是DOI,文献DOI怎么找? 2519229
邀请新用户注册赠送积分活动 1491891
关于科研通互助平台的介绍 1462916