AI-based computer-aided diagnostic system of chest digital tomography synthesis: Demonstrating comparative advantage with X-ray-based AI systems

计算机辅助设计 层析合成 投影(关系代数) 计算机科学 人工智能 计算机视觉 计算机辅助诊断 医学影像学 模式识别(心理学) 医学 算法 工程制图 癌症 乳腺癌 乳腺摄影术 内科学 工程类
作者
Kyungsu Kim,Ju Hwan Lee,Seong Je Oh,Myung Jin Chung
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107643-107643 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107643
摘要

Compared with chest X-ray (CXR) imaging, which is a single image projected from the front of the patient, chest digital tomosynthesis (CDTS) imaging can be more advantageous for lung lesion detection because it acquires multiple images projected from multiple angles of the patient. Various clinical comparative analysis and verification studies have been reported to demonstrate this, but there is no artificial intelligence (AI)-based comparative analysis studies. Existing AI-based computer-aided detection (CAD) systems for lung lesion diagnosis have been developed mainly based on CXR images; however, CAD-based on CDTS, which uses multi-angle images of patients in various directions, has not been proposed and verified for its usefulness compared to CXR-based counterparts.This study develops and tests a CDTS-based AI CAD system to detect lung lesions to demonstrate performance improvements compared to CXR-based AI CAD.We used multiple (e.g., five) projection images as input for the CDTS-based AI model and a single-projection image as input for the CXR-based AI model to compare and evaluate the performance between models. Multiple/single projection input images were obtained by virtual projection on the three-dimensional (3D) stack of computed tomography (CT) slices of each patient's lungs from which the bed area was removed. These multiple images result from shooting from the front and left and right 30/60∘. The projected image captured from the front was used as the input for the CXR-based AI model. The CDTS-based AI model used all five projected images. The proposed CDTS-based AI model consisted of five AI models that received images in each of the five directions, and obtained the final prediction result through an ensemble of five models. Each model used WideResNet-50. To train and evaluate CXR- and CDTS-based AI models, 500 healthy data, 206 tuberculosis data, and 242 pneumonia data were used, and three three-fold cross-validation was applied.The proposed CDTS-based AI CAD system yielded sensitivities of 0.782 and 0.785 and accuracies of 0.895 and 0.837 for the (binary classification) performance of detecting tuberculosis and pneumonia, respectively, against normal subjects. These results show higher performance than the sensitivity of 0.728 and 0.698 and accuracies of 0.874 and 0.826 for detecting tuberculosis and pneumonia through the CXR-based AI CAD, which only uses a single projection image in the frontal direction. We found that CDTS-based AI CAD improved the sensitivity of tuberculosis and pneumonia by 5.4% and 8.7% respectively, compared to CXR-based AI CAD without loss of accuracy.This study comparatively proves that CDTS-based AI CAD technology can improve performance more than CXR. These results suggest that we can enhance the clinical application of CDTS. Our code is available at https://github.com/kskim-phd/CDTS-CAD-P.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓉城发布了新的文献求助10
刚刚
小白鼠完成签到 ,获得积分10
1秒前
贪玩蓝月完成签到 ,获得积分10
2秒前
Ao_Jiang完成签到,获得积分10
2秒前
sean完成签到 ,获得积分10
11秒前
ncuwzq完成签到,获得积分10
11秒前
蓉城完成签到,获得积分10
13秒前
玩命做研究完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
恋恋青葡萄完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
Eber完成签到,获得积分10
19秒前
萌萌许完成签到,获得积分10
20秒前
20秒前
joe完成签到 ,获得积分10
20秒前
22秒前
宋佳发布了新的文献求助10
23秒前
英姑应助CJN采纳,获得10
24秒前
闫小闫完成签到 ,获得积分10
30秒前
美好灵寒完成签到 ,获得积分10
30秒前
33秒前
卷卷发布了新的文献求助10
38秒前
39秒前
40秒前
张sir完成签到,获得积分10
42秒前
44秒前
江三村完成签到 ,获得积分0
44秒前
欣喜易形完成签到,获得积分10
45秒前
爱吃香菜的哆啦A梦完成签到,获得积分10
45秒前
45秒前
CJN发布了新的文献求助10
45秒前
lulufighting完成签到,获得积分10
46秒前
凌晨五点的完成签到,获得积分10
47秒前
薄荷味的猫完成签到,获得积分10
48秒前
49秒前
受伤破茧发布了新的文献求助10
49秒前
健壮易巧完成签到,获得积分10
50秒前
量子星尘发布了新的文献求助10
50秒前
50秒前
Heisenberg发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677086
求助须知:如何正确求助?哪些是违规求助? 4970454
关于积分的说明 15159354
捐赠科研通 4836760
什么是DOI,文献DOI怎么找? 2591317
邀请新用户注册赠送积分活动 1544792
关于科研通互助平台的介绍 1502815