Evaluation of a nnU-Net type automated clinical volumetric tumor segmentation tool for diffuse low-grade glioma follow-up

分割 流体衰减反转恢复 计算机科学 人工智能 一致性 Sørensen–骰子系数 医学 核医学 放射科 图像分割 磁共振成像 内科学
作者
Margaux Verdier,Jérémy Deverdun,Nicolas Menjot de Champfleur,Hugues Duffau,Philippe Lam,Thomas Dos Santos,Thomas Troalen,Bénédicte Maréchal,Till Huelnhagen,Emmanuelle Le Bars
出处
期刊:Journal of Neuroradiology [Elsevier BV]
卷期号:51 (1): 16-23 被引量:4
标识
DOI:10.1016/j.neurad.2023.05.008
摘要

Diffuse low-grade gliomas (DLGG) are characterized by a slow and continuous growth and always evolve towards an aggressive grade. Accurate prediction of the malignant transformation is essential as it requires immediate therapeutic intervention. One of its most precise predictors is the velocity of diameter expansion (VDE). Currently, the VDE is estimated either by linear measurements or by manual delineation of the DLGG on T2 FLAIR acquisitions. However, because of the DLGG's infiltrative nature and its blurred contours, manual measures are challenging and variable, even for experts. Therefore we propose an automated segmentation algorithm using a 2D nnU-Net, to 1) gain time and 2) standardize VDE assessment. The 2D nnU-Net was trained on 318 acquisitions (T2 FLAIR & 3DT1 longitudinal follow-up of 30 patients, including pre- & post-surgery acquisitions, different scanners, vendors, imaging parameters…). Automated vs. manual segmentation performance was evaluated on 167 acquisitions, and its clinical interest was validated by quantifying the amount of manual correction required after automated segmentation of 98 novel acquisitions. Automated segmentation showed a good performance with a mean Dice Similarity Coefficient (DSC) of 0.82±0.13 with manual segmentation and a substantial concordance between VDE calculations. Major manual corrections (i.e., DSC<0.7) were necessary only in 3/98 cases and 81% of the cases had a DSC>0.9. The proposed automated segmentation algorithm can successfully segment DLGG on highly variable MRI data. Although manual corrections are sometimes necessary, it provides a reliable, standardized and time-winning support for VDE extraction to asses DLGG growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
无情芝麻发布了新的文献求助10
4秒前
bkagyin应助Edelweiss采纳,获得10
4秒前
激昂的逊发布了新的文献求助10
5秒前
谢健完成签到 ,获得积分10
5秒前
斯文的寒风应助GCS12采纳,获得10
5秒前
6秒前
7秒前
轻松旭尧发布了新的文献求助10
8秒前
英姑应助LANER采纳,获得10
9秒前
10秒前
顾矜应助开放的听安采纳,获得10
12秒前
zzz完成签到,获得积分10
13秒前
执着雪巧发布了新的文献求助30
14秒前
小洋甘完成签到,获得积分10
14秒前
机智初夏发布了新的文献求助10
14秒前
15秒前
Fang发布了新的文献求助10
15秒前
科研通AI2S应助WXP采纳,获得10
15秒前
爆米花应助称心寒松采纳,获得10
15秒前
15秒前
16秒前
16秒前
Jasper应助光亮的立果采纳,获得10
17秒前
nav发布了新的文献求助10
19秒前
淡然的芷荷完成签到 ,获得积分10
19秒前
19秒前
21秒前
黄雪峰发布了新的文献求助10
21秒前
两个轮发布了新的文献求助10
22秒前
奈斯发布了新的文献求助10
22秒前
苏习习完成签到,获得积分10
22秒前
1874完成签到 ,获得积分20
23秒前
qzao完成签到 ,获得积分10
24秒前
banana发布了新的文献求助10
24秒前
ll发布了新的文献求助10
25秒前
25秒前
25秒前
WEST完成签到,获得积分10
26秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727881
求助须知:如何正确求助?哪些是违规求助? 3272958
关于积分的说明 9979258
捐赠科研通 2988340
什么是DOI,文献DOI怎么找? 1639535
邀请新用户注册赠送积分活动 778803
科研通“疑难数据库(出版商)”最低求助积分说明 747817