Evaluation of a nnU-Net type automated clinical volumetric tumor segmentation tool for diffuse low-grade glioma follow-up

分割 流体衰减反转恢复 计算机科学 人工智能 一致性 Sørensen–骰子系数 医学 核医学 放射科 图像分割 磁共振成像 内科学
作者
Margaux Verdier,Jérémy Deverdun,Nicolas Menjot de Champfleur,Hugues Duffau,Philippe Lam,Thomas Dos Santos,Thomas Troalen,Bénédicte Maréchal,Till Huelnhagen,Emmanuelle Le Bars
出处
期刊:Journal of Neuroradiology [Elsevier BV]
卷期号:51 (1): 16-23 被引量:4
标识
DOI:10.1016/j.neurad.2023.05.008
摘要

Diffuse low-grade gliomas (DLGG) are characterized by a slow and continuous growth and always evolve towards an aggressive grade. Accurate prediction of the malignant transformation is essential as it requires immediate therapeutic intervention. One of its most precise predictors is the velocity of diameter expansion (VDE). Currently, the VDE is estimated either by linear measurements or by manual delineation of the DLGG on T2 FLAIR acquisitions. However, because of the DLGG's infiltrative nature and its blurred contours, manual measures are challenging and variable, even for experts. Therefore we propose an automated segmentation algorithm using a 2D nnU-Net, to 1) gain time and 2) standardize VDE assessment. The 2D nnU-Net was trained on 318 acquisitions (T2 FLAIR & 3DT1 longitudinal follow-up of 30 patients, including pre- & post-surgery acquisitions, different scanners, vendors, imaging parameters…). Automated vs. manual segmentation performance was evaluated on 167 acquisitions, and its clinical interest was validated by quantifying the amount of manual correction required after automated segmentation of 98 novel acquisitions. Automated segmentation showed a good performance with a mean Dice Similarity Coefficient (DSC) of 0.82±0.13 with manual segmentation and a substantial concordance between VDE calculations. Major manual corrections (i.e., DSC<0.7) were necessary only in 3/98 cases and 81% of the cases had a DSC>0.9. The proposed automated segmentation algorithm can successfully segment DLGG on highly variable MRI data. Although manual corrections are sometimes necessary, it provides a reliable, standardized and time-winning support for VDE extraction to asses DLGG growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小羊完成签到,获得积分10
1秒前
HDrinnk完成签到,获得积分10
2秒前
2秒前
3秒前
hulei发布了新的文献求助10
3秒前
SHDeathlock发布了新的文献求助20
3秒前
科研通AI5应助酷酷的涵蕾采纳,获得10
3秒前
韶邑发布了新的文献求助10
5秒前
6秒前
creNdro发布了新的文献求助10
6秒前
火星上的夏青给火星上的夏青的求助进行了留言
6秒前
黄诺完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助50
8秒前
中科路2020发布了新的文献求助30
9秒前
11秒前
11秒前
浮游应助0304采纳,获得10
11秒前
12秒前
缥缈的松鼠完成签到 ,获得积分10
13秒前
13秒前
13秒前
小点点cy_完成签到 ,获得积分10
14秒前
去偷火龙果完成签到,获得积分10
14秒前
桃桃不加冰完成签到,获得积分10
15秒前
16秒前
16秒前
罗4发布了新的文献求助10
17秒前
Sailzyf完成签到,获得积分10
17秒前
18秒前
绝情汤姆发布了新的文献求助10
18秒前
乐乐应助LinYX采纳,获得10
19秒前
怕黑岱周发布了新的文献求助10
19秒前
20秒前
f凡发布了新的文献求助10
20秒前
aaa发布了新的文献求助10
21秒前
22秒前
量子星尘发布了新的文献求助150
23秒前
perrier发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012268
求助须知:如何正确求助?哪些是违规求助? 4253594
关于积分的说明 13254851
捐赠科研通 4056369
什么是DOI,文献DOI怎么找? 2218666
邀请新用户注册赠送积分活动 1228332
关于科研通互助平台的介绍 1150778