Evaluation of a nnU-Net type automated clinical volumetric tumor segmentation tool for diffuse low-grade glioma follow-up

分割 流体衰减反转恢复 计算机科学 人工智能 一致性 Sørensen–骰子系数 医学 核医学 放射科 图像分割 磁共振成像 内科学
作者
Margaux Verdier,Jérémy Deverdun,Nicolas Menjot de Champfleur,Hugues Duffau,Philippe Lam,Thomas Dos Santos,Thomas Troalen,Bénédicte Maréchal,Till Huelnhagen,Emmanuelle Le Bars
出处
期刊:Journal of Neuroradiology [Elsevier BV]
卷期号:51 (1): 16-23 被引量:4
标识
DOI:10.1016/j.neurad.2023.05.008
摘要

Diffuse low-grade gliomas (DLGG) are characterized by a slow and continuous growth and always evolve towards an aggressive grade. Accurate prediction of the malignant transformation is essential as it requires immediate therapeutic intervention. One of its most precise predictors is the velocity of diameter expansion (VDE). Currently, the VDE is estimated either by linear measurements or by manual delineation of the DLGG on T2 FLAIR acquisitions. However, because of the DLGG's infiltrative nature and its blurred contours, manual measures are challenging and variable, even for experts. Therefore we propose an automated segmentation algorithm using a 2D nnU-Net, to 1) gain time and 2) standardize VDE assessment. The 2D nnU-Net was trained on 318 acquisitions (T2 FLAIR & 3DT1 longitudinal follow-up of 30 patients, including pre- & post-surgery acquisitions, different scanners, vendors, imaging parameters…). Automated vs. manual segmentation performance was evaluated on 167 acquisitions, and its clinical interest was validated by quantifying the amount of manual correction required after automated segmentation of 98 novel acquisitions. Automated segmentation showed a good performance with a mean Dice Similarity Coefficient (DSC) of 0.82±0.13 with manual segmentation and a substantial concordance between VDE calculations. Major manual corrections (i.e., DSC<0.7) were necessary only in 3/98 cases and 81% of the cases had a DSC>0.9. The proposed automated segmentation algorithm can successfully segment DLGG on highly variable MRI data. Although manual corrections are sometimes necessary, it provides a reliable, standardized and time-winning support for VDE extraction to asses DLGG growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬惜儿发布了新的文献求助10
刚刚
1秒前
现代的慕青完成签到,获得积分10
2秒前
Owen应助科研通管家采纳,获得20
2秒前
小二郎应助科研通管家采纳,获得10
3秒前
清爽电脑应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
丘比特应助吃鱼的猫采纳,获得10
4秒前
4秒前
愉快太清完成签到,获得积分10
5秒前
丘比特应助无情的玉米采纳,获得10
6秒前
8秒前
9秒前
LIUJIAWEI完成签到,获得积分10
9秒前
每天都在找完成签到,获得积分10
10秒前
伶俐从筠发布了新的文献求助10
11秒前
大模型应助陶1122采纳,获得10
11秒前
13秒前
13秒前
14秒前
顾矜应助忆修采纳,获得10
14秒前
吃鱼的猫发布了新的文献求助10
15秒前
知行合一发布了新的文献求助150
16秒前
18秒前
Arizaq发布了新的文献求助10
19秒前
胡霖完成签到,获得积分10
21秒前
g3618发布了新的文献求助10
21秒前
奋斗忆南发布了新的文献求助10
22秒前
25秒前
愉快太清发布了新的文献求助10
25秒前
26秒前
Arizaq完成签到,获得积分10
26秒前
29秒前
30秒前
Tsui发布了新的文献求助10
31秒前
g3618完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
35秒前
幸运鹅47发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824