Evaluation of a nnU-Net type automated clinical volumetric tumor segmentation tool for diffuse low-grade glioma follow-up

分割 流体衰减反转恢复 计算机科学 人工智能 一致性 Sørensen–骰子系数 医学 核医学 放射科 图像分割 磁共振成像 内科学
作者
Margaux Verdier,Jérémy Deverdun,Nicolas Menjot de Champfleur,Hugues Duffau,Pradeep Lam,Thomas Dos Santos,Thomas Troalen,Bénédicte Maréchal,Till Huelnhagen,Emmanuelle Le Bars
出处
期刊:Journal of Neuroradiology [Elsevier]
卷期号:51 (1): 16-23 被引量:3
标识
DOI:10.1016/j.neurad.2023.05.008
摘要

Diffuse low-grade gliomas (DLGG) are characterized by a slow and continuous growth and always evolve towards an aggressive grade. Accurate prediction of the malignant transformation is essential as it requires immediate therapeutic intervention. One of its most precise predictors is the velocity of diameter expansion (VDE). Currently, the VDE is estimated either by linear measurements or by manual delineation of the DLGG on T2 FLAIR acquisitions. However, because of the DLGG's infiltrative nature and its blurred contours, manual measures are challenging and variable, even for experts. Therefore we propose an automated segmentation algorithm using a 2D nnU-Net, to 1) gain time and 2) standardize VDE assessment. The 2D nnU-Net was trained on 318 acquisitions (T2 FLAIR & 3DT1 longitudinal follow-up of 30 patients, including pre- & post-surgery acquisitions, different scanners, vendors, imaging parameters…). Automated vs. manual segmentation performance was evaluated on 167 acquisitions, and its clinical interest was validated by quantifying the amount of manual correction required after automated segmentation of 98 novel acquisitions. Automated segmentation showed a good performance with a mean Dice Similarity Coefficient (DSC) of 0.82±0.13 with manual segmentation and a substantial concordance between VDE calculations. Major manual corrections (i.e., DSC<0.7) were necessary only in 3/98 cases and 81% of the cases had a DSC>0.9. The proposed automated segmentation algorithm can successfully segment DLGG on highly variable MRI data. Although manual corrections are sometimes necessary, it provides a reliable, standardized and time-winning support for VDE extraction to asses DLGG growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助健康的幻珊采纳,获得10
2秒前
顾矜应助清明采纳,获得10
3秒前
4秒前
4秒前
ephore应助theonePTC采纳,获得30
5秒前
脑洞疼应助威武的煎饼采纳,获得10
6秒前
善良鱼哟完成签到,获得积分10
6秒前
DCW完成签到 ,获得积分10
8秒前
8秒前
AbMole_小智发布了新的文献求助10
9秒前
JHzazaza发布了新的文献求助10
9秒前
ZYL发布了新的文献求助10
9秒前
NexusExplorer应助Orochimaru采纳,获得10
9秒前
10秒前
10秒前
12秒前
欢呼的花卷完成签到,获得积分10
13秒前
13秒前
13秒前
Lan发布了新的文献求助10
14秒前
ny完成签到 ,获得积分20
14秒前
JayWu完成签到,获得积分10
14秒前
AbMole_小智完成签到,获得积分10
16秒前
16秒前
zhouyou发布了新的文献求助10
16秒前
16秒前
Lee发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
19秒前
ZYL完成签到,获得积分10
19秒前
19秒前
VAN喵完成签到,获得积分10
21秒前
21秒前
cx发布了新的文献求助10
21秒前
21秒前
北欧海盗发布了新的文献求助10
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 600
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3064589
求助须知:如何正确求助?哪些是违规求助? 2719285
关于积分的说明 7463273
捐赠科研通 2365693
什么是DOI,文献DOI怎么找? 1254139
科研通“疑难数据库(出版商)”最低求助积分说明 608796
版权声明 596684