Evaluation of a nnU-Net type automated clinical volumetric tumor segmentation tool for diffuse low-grade glioma follow-up

分割 流体衰减反转恢复 计算机科学 人工智能 一致性 Sørensen–骰子系数 医学 核医学 放射科 图像分割 磁共振成像 内科学
作者
Margaux Verdier,Jérémy Deverdun,Nicolas Menjot de Champfleur,Hugues Duffau,Philippe Lam,Thomas Dos Santos,Thomas Troalen,Bénédicte Maréchal,Till Huelnhagen,Emmanuelle Le Bars
出处
期刊:Journal of Neuroradiology [Elsevier]
卷期号:51 (1): 16-23 被引量:4
标识
DOI:10.1016/j.neurad.2023.05.008
摘要

Diffuse low-grade gliomas (DLGG) are characterized by a slow and continuous growth and always evolve towards an aggressive grade. Accurate prediction of the malignant transformation is essential as it requires immediate therapeutic intervention. One of its most precise predictors is the velocity of diameter expansion (VDE). Currently, the VDE is estimated either by linear measurements or by manual delineation of the DLGG on T2 FLAIR acquisitions. However, because of the DLGG's infiltrative nature and its blurred contours, manual measures are challenging and variable, even for experts. Therefore we propose an automated segmentation algorithm using a 2D nnU-Net, to 1) gain time and 2) standardize VDE assessment. The 2D nnU-Net was trained on 318 acquisitions (T2 FLAIR & 3DT1 longitudinal follow-up of 30 patients, including pre- & post-surgery acquisitions, different scanners, vendors, imaging parameters…). Automated vs. manual segmentation performance was evaluated on 167 acquisitions, and its clinical interest was validated by quantifying the amount of manual correction required after automated segmentation of 98 novel acquisitions. Automated segmentation showed a good performance with a mean Dice Similarity Coefficient (DSC) of 0.82±0.13 with manual segmentation and a substantial concordance between VDE calculations. Major manual corrections (i.e., DSC<0.7) were necessary only in 3/98 cases and 81% of the cases had a DSC>0.9. The proposed automated segmentation algorithm can successfully segment DLGG on highly variable MRI data. Although manual corrections are sometimes necessary, it provides a reliable, standardized and time-winning support for VDE extraction to asses DLGG growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苦海学呀发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
GENIUS完成签到,获得积分10
4秒前
领导范儿应助靓丽初蓝采纳,获得10
4秒前
fareless完成签到 ,获得积分10
4秒前
白耳猫发布了新的文献求助10
4秒前
科研通AI2S应助vn采纳,获得10
4秒前
123完成签到,获得积分10
5秒前
乐乐应助卫东采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Nitric_Oxide应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
霸气雅旋发布了新的文献求助10
8秒前
烟花应助zhengmin采纳,获得10
8秒前
鱼鱼子999发布了新的文献求助10
8秒前
fzh发布了新的文献求助10
12秒前
白耳猫完成签到,获得积分10
12秒前
13秒前
14秒前
syiimo完成签到 ,获得积分10
14秒前
16秒前
靓丽初蓝发布了新的文献求助10
17秒前
20秒前
ABCD发布了新的文献求助10
20秒前
21秒前
清爽的元灵完成签到 ,获得积分10
22秒前
重要哈密瓜,数据线完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164253
求助须知:如何正确求助?哪些是违规求助? 2814960
关于积分的说明 7907257
捐赠科研通 2474588
什么是DOI,文献DOI怎么找? 1317573
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228