AK-HR : An efficient adaptive Kriging-based n-hypersphere rings method for structural reliability analysis

克里金 超球体 替代模型 稳健性(进化) 计算机科学 可靠性(半导体) 数学优化 算法 交叉验证 数学 可靠性工程 机器学习 人工智能 工程类 功率(物理) 物理 量子力学 生物化学 化学 基因
作者
Dapeng Wang,Dequan Zhang,Meng Yuan,Meide Yang,Chuizhou Meng,Xu Han,Qing Li
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:414: 116146-116146 被引量:20
标识
DOI:10.1016/j.cma.2023.116146
摘要

With increasing complexity of engineering problems, various traditional reliability analysis methods are facing rising challenges in terms of computational efficiency and accuracy. Surrogate models, especially Kriging model, have received growing attention and been widely used in reliability analyses by the virtue of their advantages for achieving high computational efficiency and ensuring high numerical accuracy. Nevertheless, there have been still two significant problems in the Kriging model-assisted reliability analyses due to the absence of prior knowledge: i.e. (1) the size of candidate sample pool tends to be quite large in order to ensure prediction of a convergent failure probability; and (2) local prediction accuracy of limiting state surface by Kriging model is generally excessive. These above two issues can often result in high computational cost for Kriging-based reliability analyses. To enhance computational efficiency, a new method that combines adaptive Kriging and n-hypersphere rings, named an AK-HRn method, is proposed in this study. First, the n-hypersphere rings, which can update its position and radius adaptively, is adopted to divide the design space into potential safety domains and potential failure domains. Second, these potential failure domains are used as the sampling domains for implementing importance sampling method to generate a suitably-sized candidate sample pool. Third, a novel learning function is presented to enrich the design of experiment (DoE), which avoids excessive local prediction accuracy of Kriging models by establishing the rejection domains. Finally, the efficiency and robustness of AK-HRn is compared with other Kriging-based reliability analysis methods through four illustrative numerical examples and one 6-DOF industrial robot case study. Comparison shows that the proposed AK-HRn method has high efficiency and robustness to solve complex reliability analysis problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hsa_ID发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
期待完成签到,获得积分10
3秒前
3秒前
yanliu95完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
shimmer发布了新的文献求助10
5秒前
lzt发布了新的文献求助10
6秒前
淡然的剑通完成签到 ,获得积分10
6秒前
6秒前
7秒前
wpy发布了新的文献求助10
7秒前
务实慕山发布了新的文献求助10
8秒前
拉长的娩发布了新的文献求助10
8秒前
8秒前
烂漫的汲完成签到,获得积分10
8秒前
巧克力怪发布了新的文献求助50
9秒前
creNdro发布了新的文献求助10
10秒前
爱听歌傲玉完成签到,获得积分10
10秒前
杭幻丝发布了新的文献求助10
10秒前
DrRayson1208完成签到,获得积分10
11秒前
謦欬与风完成签到,获得积分10
13秒前
YangLi发布了新的文献求助10
13秒前
hsa_ID完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助150
15秒前
15秒前
16秒前
16秒前
huohuo完成签到,获得积分10
17秒前
黄佳慧发布了新的文献求助10
17秒前
斯文败类应助xs采纳,获得10
17秒前
Zxxz发布了新的文献求助10
18秒前
Kim_Hou发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012268
求助须知:如何正确求助?哪些是违规求助? 4253594
关于积分的说明 13254851
捐赠科研通 4056369
什么是DOI,文献DOI怎么找? 2218666
邀请新用户注册赠送积分活动 1228332
关于科研通互助平台的介绍 1150778