AK-HR : An efficient adaptive Kriging-based n-hypersphere rings method for structural reliability analysis

克里金 超球体 替代模型 稳健性(进化) 计算机科学 可靠性(半导体) 数学优化 算法 交叉验证 数学 可靠性工程 机器学习 人工智能 工程类 功率(物理) 物理 量子力学 生物化学 化学 基因
作者
Dapeng Wang,Dequan Zhang,Meng Yuan,Meide Yang,Chuizhou Meng,Xu Han,Qing Li
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:414: 116146-116146 被引量:20
标识
DOI:10.1016/j.cma.2023.116146
摘要

With increasing complexity of engineering problems, various traditional reliability analysis methods are facing rising challenges in terms of computational efficiency and accuracy. Surrogate models, especially Kriging model, have received growing attention and been widely used in reliability analyses by the virtue of their advantages for achieving high computational efficiency and ensuring high numerical accuracy. Nevertheless, there have been still two significant problems in the Kriging model-assisted reliability analyses due to the absence of prior knowledge: i.e. (1) the size of candidate sample pool tends to be quite large in order to ensure prediction of a convergent failure probability; and (2) local prediction accuracy of limiting state surface by Kriging model is generally excessive. These above two issues can often result in high computational cost for Kriging-based reliability analyses. To enhance computational efficiency, a new method that combines adaptive Kriging and n-hypersphere rings, named an AK-HRn method, is proposed in this study. First, the n-hypersphere rings, which can update its position and radius adaptively, is adopted to divide the design space into potential safety domains and potential failure domains. Second, these potential failure domains are used as the sampling domains for implementing importance sampling method to generate a suitably-sized candidate sample pool. Third, a novel learning function is presented to enrich the design of experiment (DoE), which avoids excessive local prediction accuracy of Kriging models by establishing the rejection domains. Finally, the efficiency and robustness of AK-HRn is compared with other Kriging-based reliability analysis methods through four illustrative numerical examples and one 6-DOF industrial robot case study. Comparison shows that the proposed AK-HRn method has high efficiency and robustness to solve complex reliability analysis problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dada发布了新的文献求助10
刚刚
SciGPT应助包容的琦采纳,获得10
1秒前
1秒前
Orange应助Iris采纳,获得10
2秒前
陈某完成签到,获得积分20
3秒前
大猛1发布了新的文献求助10
4秒前
赵亮发布了新的文献求助10
6秒前
留留给留留的求助进行了留言
8秒前
Miller发布了新的文献求助10
8秒前
9秒前
謃河鷺起完成签到,获得积分10
9秒前
cloud发布了新的文献求助50
10秒前
12秒前
13秒前
14秒前
14秒前
14秒前
14秒前
15秒前
紧张的梦岚应助医路前行采纳,获得20
15秒前
米糊发布了新的文献求助10
16秒前
16秒前
birdy发布了新的文献求助10
17秒前
荔枝发布了新的文献求助10
18秒前
123发布了新的文献求助10
18秒前
包容的琦发布了新的文献求助10
18秒前
chinning完成签到,获得积分10
19秒前
20秒前
大炮运输发布了新的文献求助30
20秒前
21秒前
Akim应助追风hyzhang采纳,获得30
21秒前
打打应助hh采纳,获得10
22秒前
满意外套完成签到,获得积分10
22秒前
萧萧完成签到,获得积分10
23秒前
23秒前
23秒前
123完成签到,获得积分10
24秒前
Hello应助舒适路人采纳,获得200
24秒前
传奇3应助荔枝采纳,获得10
25秒前
彭于晏应助西雅采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524932
求助须知:如何正确求助?哪些是违规求助? 3105740
关于积分的说明 9276012
捐赠科研通 2803027
什么是DOI,文献DOI怎么找? 1538292
邀请新用户注册赠送积分活动 716162
科研通“疑难数据库(出版商)”最低求助积分说明 709278