已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AK-HR : An efficient adaptive Kriging-based n-hypersphere rings method for structural reliability analysis

克里金 超球体 替代模型 稳健性(进化) 计算机科学 可靠性(半导体) 数学优化 算法 交叉验证 数学 可靠性工程 机器学习 人工智能 工程类 功率(物理) 物理 量子力学 生物化学 化学 基因
作者
Dapeng Wang,Dequan Zhang,Meng Yuan,Meide Yang,Chuizhou Meng,Xu Han,Qing Li
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:414: 116146-116146 被引量:20
标识
DOI:10.1016/j.cma.2023.116146
摘要

With increasing complexity of engineering problems, various traditional reliability analysis methods are facing rising challenges in terms of computational efficiency and accuracy. Surrogate models, especially Kriging model, have received growing attention and been widely used in reliability analyses by the virtue of their advantages for achieving high computational efficiency and ensuring high numerical accuracy. Nevertheless, there have been still two significant problems in the Kriging model-assisted reliability analyses due to the absence of prior knowledge: i.e. (1) the size of candidate sample pool tends to be quite large in order to ensure prediction of a convergent failure probability; and (2) local prediction accuracy of limiting state surface by Kriging model is generally excessive. These above two issues can often result in high computational cost for Kriging-based reliability analyses. To enhance computational efficiency, a new method that combines adaptive Kriging and n-hypersphere rings, named an AK-HRn method, is proposed in this study. First, the n-hypersphere rings, which can update its position and radius adaptively, is adopted to divide the design space into potential safety domains and potential failure domains. Second, these potential failure domains are used as the sampling domains for implementing importance sampling method to generate a suitably-sized candidate sample pool. Third, a novel learning function is presented to enrich the design of experiment (DoE), which avoids excessive local prediction accuracy of Kriging models by establishing the rejection domains. Finally, the efficiency and robustness of AK-HRn is compared with other Kriging-based reliability analysis methods through four illustrative numerical examples and one 6-DOF industrial robot case study. Comparison shows that the proposed AK-HRn method has high efficiency and robustness to solve complex reliability analysis problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
852应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
小明应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
思源应助唐泽雪穗采纳,获得10
4秒前
ding应助唐泽雪穗采纳,获得10
4秒前
星辰大海应助唐泽雪穗采纳,获得10
4秒前
大模型应助唐泽雪穗采纳,获得10
5秒前
大模型应助唐泽雪穗采纳,获得10
5秒前
星辰大海应助唐泽雪穗采纳,获得10
5秒前
斯文败类应助唐泽雪穗采纳,获得10
5秒前
李健应助唐泽雪穗采纳,获得10
5秒前
bkagyin应助唐泽雪穗采纳,获得10
5秒前
上官若男应助唐泽雪穗采纳,获得10
5秒前
超帅的荷花完成签到 ,获得积分10
5秒前
920713712发布了新的文献求助10
5秒前
仁爱柠檬发布了新的文献求助10
6秒前
8秒前
星辰大海应助mfiomo采纳,获得10
9秒前
10秒前
顺利的飞荷完成签到,获得积分0
10秒前
11秒前
qrt发布了新的文献求助10
11秒前
14秒前
热情饼干发布了新的文献求助10
15秒前
15秒前
传奇3应助920713712采纳,获得10
15秒前
严天飞发布了新的文献求助10
16秒前
wanci应助Nemo采纳,获得10
16秒前
AX完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993938
求助须知:如何正确求助?哪些是违规求助? 4241656
关于积分的说明 13214726
捐赠科研通 4037024
什么是DOI,文献DOI怎么找? 2208896
邀请新用户注册赠送积分活动 1219743
关于科研通互助平台的介绍 1138129