AK-HR : An efficient adaptive Kriging-based n-hypersphere rings method for structural reliability analysis

克里金 超球体 替代模型 稳健性(进化) 计算机科学 可靠性(半导体) 数学优化 算法 交叉验证 数学 可靠性工程 机器学习 人工智能 工程类 功率(物理) 物理 量子力学 生物化学 化学 基因
作者
Dapeng Wang,Dequan Zhang,Meng Yuan,Meide Yang,Chuizhou Meng,Xu Han,Qing Li
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:414: 116146-116146 被引量:20
标识
DOI:10.1016/j.cma.2023.116146
摘要

With increasing complexity of engineering problems, various traditional reliability analysis methods are facing rising challenges in terms of computational efficiency and accuracy. Surrogate models, especially Kriging model, have received growing attention and been widely used in reliability analyses by the virtue of their advantages for achieving high computational efficiency and ensuring high numerical accuracy. Nevertheless, there have been still two significant problems in the Kriging model-assisted reliability analyses due to the absence of prior knowledge: i.e. (1) the size of candidate sample pool tends to be quite large in order to ensure prediction of a convergent failure probability; and (2) local prediction accuracy of limiting state surface by Kriging model is generally excessive. These above two issues can often result in high computational cost for Kriging-based reliability analyses. To enhance computational efficiency, a new method that combines adaptive Kriging and n-hypersphere rings, named an AK-HRn method, is proposed in this study. First, the n-hypersphere rings, which can update its position and radius adaptively, is adopted to divide the design space into potential safety domains and potential failure domains. Second, these potential failure domains are used as the sampling domains for implementing importance sampling method to generate a suitably-sized candidate sample pool. Third, a novel learning function is presented to enrich the design of experiment (DoE), which avoids excessive local prediction accuracy of Kriging models by establishing the rejection domains. Finally, the efficiency and robustness of AK-HRn is compared with other Kriging-based reliability analysis methods through four illustrative numerical examples and one 6-DOF industrial robot case study. Comparison shows that the proposed AK-HRn method has high efficiency and robustness to solve complex reliability analysis problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
laodai8855发布了新的文献求助10
2秒前
2秒前
我是老大应助XinTKW采纳,获得10
3秒前
syvshc发布了新的文献求助10
3秒前
聪慧的小伙完成签到,获得积分10
3秒前
4秒前
蝈蝈发布了新的文献求助10
4秒前
4秒前
Amazing_Grace发布了新的文献求助30
5秒前
Xiaoming85完成签到,获得积分10
5秒前
5秒前
鸣笛应助晴烟ZYM采纳,获得30
6秒前
wys发布了新的文献求助10
6秒前
7秒前
9秒前
北辰完成签到,获得积分10
9秒前
10秒前
hututu发布了新的文献求助30
10秒前
领导范儿应助huluobo采纳,获得10
11秒前
weihe发布了新的文献求助80
11秒前
kk发布了新的文献求助10
11秒前
Archy发布了新的文献求助10
12秒前
眼睛大的傲菡完成签到,获得积分10
13秒前
14秒前
想退休了发布了新的文献求助10
17秒前
17秒前
今后应助一坨采纳,获得30
19秒前
彬琪完成签到,获得积分10
19秒前
zhangyu应助梦Weimar采纳,获得10
19秒前
微7发布了新的文献求助10
19秒前
wish完成签到 ,获得积分10
20秒前
鸣笛应助聪明的元彤采纳,获得200
20秒前
21秒前
在水一方应助CY采纳,获得10
21秒前
Ava应助小奶瓶_采纳,获得10
24秒前
weihe完成签到,获得积分10
24秒前
nicheng完成签到 ,获得积分0
25秒前
25秒前
木心应助coo采纳,获得20
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629