Dimensionality reduction visualization analysis of financial data based on semantic feature group

降维 计算机科学 可视化 数据可视化 特征(语言学) 群(周期表) 还原(数学) 维数之咒 数据挖掘 人工智能 数学 几何学 语言学 哲学 有机化学 化学
作者
Ke Wang,Mneghua Luo,Xionglve Li,Zhiping Cai,Long Yang
标识
DOI:10.1117/12.2675147
摘要

With the continuous development of data science and financial technology, financial data visualization methods have become an essential key technology in the field of financial data analysis today. From the technical point of view, the mainstream visualization analysis takes the fusion of large screen and multiple views, and the nature of its visualization effect is more focused on the enumeration display, without fully analyzing the data characteristics from the essence. The single view visualization analysis technology is difficult to get clear and effective visualization display through correlation analysis, dimensionality reduction algorithms and principal component analysis. From the application point of view, credit card customer data, as an important part of financial data, has positive practical significance in customer profiling, product recommendation and risk prediction, and the targeted improvement research of its visualization method has an important role. The semantic feature group method combines the domain knowledge and data distribution characteristics of credit card customer churn data, composes and analyzes the semantic feature groups, and obtains explicit visualization and analysis results by combining the understanding of the actual problem and the numerical characteristics of the data itself. The accuracy and efficiency of the data representation based on the semantic feature group method are verified by comparing the data dimensionality reduction visualization methods such as multi-view fusion method, T-distribution random neighborhood embedding and principal component analysis in the experiment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
元谷雪应助miqilin采纳,获得10
1秒前
科研通AI6应助务实思卉采纳,获得10
2秒前
2秒前
pipi发布了新的文献求助10
2秒前
酷波er应助落后的老太采纳,获得10
3秒前
orixero应助Lushine采纳,获得10
3秒前
3秒前
盐焗鱼丸完成签到 ,获得积分10
3秒前
浮游应助huanhuan采纳,获得10
4秒前
英姑应助安风采纳,获得10
4秒前
浮游应助huanhuan采纳,获得10
4秒前
战神幽默完成签到,获得积分10
4秒前
共享精神应助huanhuan采纳,获得10
4秒前
烟花应助儒雅的醉柳采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
杨宝仪发布了新的文献求助10
5秒前
lzq1116完成签到,获得积分10
5秒前
5秒前
dungaway发布了新的文献求助10
5秒前
6秒前
科研通AI6应助邪魅采纳,获得10
6秒前
SciGPT应助kdjm688采纳,获得10
6秒前
Yz发布了新的文献求助10
6秒前
6秒前
6秒前
Hello应助沐兮采纳,获得10
7秒前
科研通AI6应助mayyyyyy采纳,获得10
7秒前
李健应助ljj采纳,获得10
7秒前
星辰大海应助miqilin采纳,获得10
8秒前
郭文钦发布了新的文献求助10
8秒前
情怀应助qq采纳,获得10
9秒前
chank完成签到,获得积分10
9秒前
9秒前
lzq1116发布了新的文献求助10
10秒前
yumi0826发布了新的文献求助30
10秒前
10秒前
天天快乐应助qjq采纳,获得20
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674