Dimensionality reduction visualization analysis of financial data based on semantic feature group

降维 计算机科学 可视化 数据可视化 特征(语言学) 群(周期表) 还原(数学) 维数之咒 数据挖掘 人工智能 数学 几何学 语言学 哲学 有机化学 化学
作者
Ke Wang,Mneghua Luo,Xionglve Li,Zhiping Cai,Long Yang
标识
DOI:10.1117/12.2675147
摘要

With the continuous development of data science and financial technology, financial data visualization methods have become an essential key technology in the field of financial data analysis today. From the technical point of view, the mainstream visualization analysis takes the fusion of large screen and multiple views, and the nature of its visualization effect is more focused on the enumeration display, without fully analyzing the data characteristics from the essence. The single view visualization analysis technology is difficult to get clear and effective visualization display through correlation analysis, dimensionality reduction algorithms and principal component analysis. From the application point of view, credit card customer data, as an important part of financial data, has positive practical significance in customer profiling, product recommendation and risk prediction, and the targeted improvement research of its visualization method has an important role. The semantic feature group method combines the domain knowledge and data distribution characteristics of credit card customer churn data, composes and analyzes the semantic feature groups, and obtains explicit visualization and analysis results by combining the understanding of the actual problem and the numerical characteristics of the data itself. The accuracy and efficiency of the data representation based on the semantic feature group method are verified by comparing the data dimensionality reduction visualization methods such as multi-view fusion method, T-distribution random neighborhood embedding and principal component analysis in the experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anny.white完成签到,获得积分10
1秒前
G1997完成签到 ,获得积分10
1秒前
小龙仔123完成签到,获得积分10
2秒前
义气的羽毛完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
叶y发布了新的文献求助10
5秒前
传奇3应助一路生花采纳,获得10
5秒前
6秒前
千跃完成签到,获得积分10
6秒前
6秒前
kiki发布了新的文献求助10
8秒前
8秒前
10秒前
酷波er应助SMLW采纳,获得10
11秒前
adam完成签到,获得积分10
12秒前
马上毕业发布了新的文献求助10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
Dada应助科研通管家采纳,获得50
13秒前
LEMONS应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
14秒前
荔刻UTD发布了新的文献求助10
16秒前
17秒前
20秒前
共享精神应助kiki采纳,获得10
22秒前
24秒前
明理向真完成签到,获得积分10
25秒前
Owen应助hjl90527采纳,获得10
26秒前
manggggo完成签到,获得积分10
28秒前
传奇3应助荔刻UTD采纳,获得10
29秒前
aaiirrii发布了新的文献求助10
29秒前
qhk完成签到,获得积分10
32秒前
陌疑应助Steven采纳,获得10
33秒前
战晓完成签到,获得积分10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150