Dimensionality reduction visualization analysis of financial data based on semantic feature group

降维 计算机科学 可视化 数据可视化 特征(语言学) 群(周期表) 还原(数学) 维数之咒 数据挖掘 人工智能 数学 语言学 哲学 化学 几何学 有机化学
作者
Ke Wang,Mneghua Luo,Xionglve Li,Zhiping Cai,Long Yang
标识
DOI:10.1117/12.2675147
摘要

With the continuous development of data science and financial technology, financial data visualization methods have become an essential key technology in the field of financial data analysis today. From the technical point of view, the mainstream visualization analysis takes the fusion of large screen and multiple views, and the nature of its visualization effect is more focused on the enumeration display, without fully analyzing the data characteristics from the essence. The single view visualization analysis technology is difficult to get clear and effective visualization display through correlation analysis, dimensionality reduction algorithms and principal component analysis. From the application point of view, credit card customer data, as an important part of financial data, has positive practical significance in customer profiling, product recommendation and risk prediction, and the targeted improvement research of its visualization method has an important role. The semantic feature group method combines the domain knowledge and data distribution characteristics of credit card customer churn data, composes and analyzes the semantic feature groups, and obtains explicit visualization and analysis results by combining the understanding of the actual problem and the numerical characteristics of the data itself. The accuracy and efficiency of the data representation based on the semantic feature group method are verified by comparing the data dimensionality reduction visualization methods such as multi-view fusion method, T-distribution random neighborhood embedding and principal component analysis in the experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小其发布了新的文献求助20
1秒前
Liou发布了新的文献求助50
3秒前
李健应助coco采纳,获得10
5秒前
得得得123完成签到,获得积分10
5秒前
物理苟完成签到,获得积分10
5秒前
欣欣儿完成签到 ,获得积分10
6秒前
祺志鲜明完成签到,获得积分10
8秒前
9秒前
生椰拿铁完成签到,获得积分10
10秒前
Ava应助dophin采纳,获得10
11秒前
wangyu完成签到,获得积分10
12秒前
14秒前
Rain完成签到,获得积分10
14秒前
BlueMag1c发布了新的文献求助10
14秒前
jobs发布了新的文献求助10
14秒前
15秒前
15秒前
YaboHu完成签到,获得积分10
15秒前
小二郎应助李慧敏采纳,获得10
16秒前
寒冷的夜蓉完成签到,获得积分10
18秒前
18秒前
HWJ发布了新的文献求助10
20秒前
20秒前
20秒前
优雅笑蓝发布了新的文献求助10
20秒前
20秒前
Rain发布了新的文献求助10
21秒前
天天快乐应助Georgechan采纳,获得10
21秒前
Jonathan发布了新的文献求助10
22秒前
完美世界应助FionaZhong采纳,获得10
23秒前
文森特的向日葵完成签到,获得积分10
24秒前
Dimples发布了新的文献求助10
24秒前
25秒前
HEIKU应助乐观的蜗牛采纳,获得10
25秒前
即将高产sci完成签到,获得积分10
26秒前
27秒前
wwl完成签到,获得积分10
29秒前
30秒前
32秒前
WeiBao发布了新的文献求助10
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264787
求助须知:如何正确求助?哪些是违规求助? 2904721
关于积分的说明 8331423
捐赠科研通 2575088
什么是DOI,文献DOI怎么找? 1399642
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633296