清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Expanded feature space-based gradient boosting ensemble learning for risk prediction of type 2 diabetes complications

Boosting(机器学习) 梯度升压 集成学习 计算机科学 决策树 机器学习 人工智能 特征(语言学) 集合预报 数据挖掘 随机森林 语言学 哲学
作者
Yiran Wang,Sutong Wang,Xiutian Sima,Yu Song,Shaoze Cui,Dujuan Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:144: 110451-110451
标识
DOI:10.1016/j.asoc.2023.110451
摘要

As a metabolic disease, diabetes is a serious threat to human health, in which type 2 diabetes (T2D) constitutes about 90% of diabetic cases. As the disease progresses, T2D often comes with various complications such as kidney disease and retinopathy, which may cause huge threats to patients’ health. In recent years, complication prediction of T2D has gained wide research interest as early disease detection and management can effectively reduce the risk of death. In this paper, to break through the limitation of the available data and achieve higher overall prediction accuracy, an improved feature space-based gradient boosting regression tree ensemble (IFS-GBRTE) approach is proposed for the risk prediction of developing T2D complications. Specifically, the original feature space is expanded based on existing feature generation theories. Then the new feature space is refined by comparing the total contribution of each feature during the construction of a classification and regression tree (CART) under a cross-validation scheme. Finally, a gradient boosting ensemble algorithm using CART as base learners is utilized for model training. The prediction model is validated on the T2D data provided by the China National Clinical Medical Science Data Center. The experimental results show that the proposed IFS-GBRTE achieves 82.49% accuracy and realizes better generalization ability than compared single models and ensemble learning models, meanwhile it is helpful to obtain more effective predictive variables for improving the accuracy of risk prediction of T2D complications, which is of great significance for achieving the early prevention, screening and nursing of complications, and further reducing mortality and save medical resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助JA采纳,获得10
7秒前
笨笨完成签到 ,获得积分10
12秒前
亿亿亿亿发布了新的文献求助10
13秒前
m李完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
27秒前
沈惠映完成签到 ,获得积分10
29秒前
tulips完成签到 ,获得积分10
31秒前
望向天空的鱼完成签到 ,获得积分10
51秒前
亿亿亿亿发布了新的文献求助10
1分钟前
1分钟前
1分钟前
JA发布了新的文献求助10
1分钟前
亿亿亿亿发布了新的文献求助10
1分钟前
柒八染完成签到 ,获得积分10
1分钟前
Sandy应助科研通管家采纳,获得80
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
赘婿应助P1gy采纳,获得100
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
徐团伟完成签到 ,获得积分10
2分钟前
2分钟前
奔跑的小熊完成签到 ,获得积分10
2分钟前
puhong zhang完成签到,获得积分10
2分钟前
2分钟前
vvvaee完成签到 ,获得积分10
2分钟前
开心每一天完成签到 ,获得积分10
3分钟前
梨子茶发布了新的文献求助30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
3分钟前
俭朴的慕山完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
WenJun完成签到,获得积分10
3分钟前
Perry完成签到,获得积分10
3分钟前
nuliguan完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128805
捐赠科研通 3238345
什么是DOI,文献DOI怎么找? 1789709
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069