Expanded feature space-based gradient boosting ensemble learning for risk prediction of type 2 diabetes complications

Boosting(机器学习) 梯度升压 集成学习 计算机科学 决策树 机器学习 人工智能 特征(语言学) 集合预报 数据挖掘 随机森林 语言学 哲学
作者
Yiran Wang,Sutong Wang,Xiutian Sima,Yu Song,Shaoze Cui,Dujuan Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:144: 110451-110451
标识
DOI:10.1016/j.asoc.2023.110451
摘要

As a metabolic disease, diabetes is a serious threat to human health, in which type 2 diabetes (T2D) constitutes about 90% of diabetic cases. As the disease progresses, T2D often comes with various complications such as kidney disease and retinopathy, which may cause huge threats to patients’ health. In recent years, complication prediction of T2D has gained wide research interest as early disease detection and management can effectively reduce the risk of death. In this paper, to break through the limitation of the available data and achieve higher overall prediction accuracy, an improved feature space-based gradient boosting regression tree ensemble (IFS-GBRTE) approach is proposed for the risk prediction of developing T2D complications. Specifically, the original feature space is expanded based on existing feature generation theories. Then the new feature space is refined by comparing the total contribution of each feature during the construction of a classification and regression tree (CART) under a cross-validation scheme. Finally, a gradient boosting ensemble algorithm using CART as base learners is utilized for model training. The prediction model is validated on the T2D data provided by the China National Clinical Medical Science Data Center. The experimental results show that the proposed IFS-GBRTE achieves 82.49% accuracy and realizes better generalization ability than compared single models and ensemble learning models, meanwhile it is helpful to obtain more effective predictive variables for improving the accuracy of risk prediction of T2D complications, which is of great significance for achieving the early prevention, screening and nursing of complications, and further reducing mortality and save medical resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ann发布了新的文献求助10
3秒前
斯文败类应助任海军采纳,获得10
4秒前
6秒前
星辰大海应助幸福鱼采纳,获得10
7秒前
HC3完成签到 ,获得积分10
8秒前
Ann完成签到,获得积分10
11秒前
11秒前
JUN发布了新的文献求助10
12秒前
14秒前
研友_LN7AOn完成签到,获得积分10
14秒前
15秒前
YanZhe完成签到,获得积分10
15秒前
旭宝儿发布了新的文献求助10
15秒前
16秒前
任海军发布了新的文献求助10
18秒前
19秒前
Ting完成签到,获得积分10
20秒前
Mistekary发布了新的文献求助10
21秒前
万能图书馆应助壮观曼凡采纳,获得10
22秒前
FashionBoy应助旭宝儿采纳,获得10
22秒前
从容芮应助lishan采纳,获得10
22秒前
22秒前
赘婿应助dzll采纳,获得10
22秒前
个性的紫菜应助W查查采纳,获得10
22秒前
setmefree发布了新的文献求助10
23秒前
23秒前
高高的坤完成签到 ,获得积分10
23秒前
goldNAN完成签到,获得积分10
23秒前
新新完成签到,获得积分20
24秒前
就这完成签到,获得积分10
26秒前
123ren6发布了新的文献求助10
26秒前
新新发布了新的文献求助10
28秒前
橙汁摇一摇完成签到 ,获得积分10
28秒前
tutu完成签到,获得积分10
29秒前
lishan完成签到,获得积分10
32秒前
LILI发布了新的文献求助10
37秒前
无花果应助颜陌采纳,获得10
38秒前
充电宝应助颜陌采纳,获得10
38秒前
38秒前
44秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194