Expanded feature space-based gradient boosting ensemble learning for risk prediction of type 2 diabetes complications

Boosting(机器学习) 梯度升压 集成学习 计算机科学 决策树 机器学习 人工智能 特征(语言学) 集合预报 数据挖掘 随机森林 语言学 哲学
作者
Yiran Wang,Sutong Wang,Xiutian Sima,Yu Song,Shaoze Cui,Dujuan Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:144: 110451-110451
标识
DOI:10.1016/j.asoc.2023.110451
摘要

As a metabolic disease, diabetes is a serious threat to human health, in which type 2 diabetes (T2D) constitutes about 90% of diabetic cases. As the disease progresses, T2D often comes with various complications such as kidney disease and retinopathy, which may cause huge threats to patients’ health. In recent years, complication prediction of T2D has gained wide research interest as early disease detection and management can effectively reduce the risk of death. In this paper, to break through the limitation of the available data and achieve higher overall prediction accuracy, an improved feature space-based gradient boosting regression tree ensemble (IFS-GBRTE) approach is proposed for the risk prediction of developing T2D complications. Specifically, the original feature space is expanded based on existing feature generation theories. Then the new feature space is refined by comparing the total contribution of each feature during the construction of a classification and regression tree (CART) under a cross-validation scheme. Finally, a gradient boosting ensemble algorithm using CART as base learners is utilized for model training. The prediction model is validated on the T2D data provided by the China National Clinical Medical Science Data Center. The experimental results show that the proposed IFS-GBRTE achieves 82.49% accuracy and realizes better generalization ability than compared single models and ensemble learning models, meanwhile it is helpful to obtain more effective predictive variables for improving the accuracy of risk prediction of T2D complications, which is of great significance for achieving the early prevention, screening and nursing of complications, and further reducing mortality and save medical resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
何休槊发布了新的文献求助20
1秒前
1秒前
Cactus应助cat_head采纳,获得10
1秒前
HonamC完成签到,获得积分10
2秒前
Windycityguy完成签到,获得积分10
2秒前
科研通AI5应助bluesiryao采纳,获得10
2秒前
我爱紫丁香完成签到,获得积分10
3秒前
JJ完成签到,获得积分10
3秒前
Hoooo...发布了新的文献求助10
4秒前
asd发布了新的文献求助10
4秒前
4秒前
有足量NaCl发布了新的文献求助10
4秒前
研友_VZG7GZ应助eternity136采纳,获得10
5秒前
5秒前
pomelost发布了新的文献求助10
5秒前
煎饼果子完成签到,获得积分10
6秒前
mj完成签到,获得积分10
6秒前
7秒前
MHX完成签到,获得积分10
8秒前
9秒前
Doubleyang1完成签到,获得积分20
10秒前
i2z关注了科研通微信公众号
10秒前
10秒前
研友_VZG7GZ应助碧蓝的觅露采纳,获得10
10秒前
ding应助明理的凌旋采纳,获得10
11秒前
12秒前
Ainhoa完成签到,获得积分10
12秒前
独孤幻月96应助甜甜亦丝采纳,获得10
12秒前
哆啦A涵发布了新的文献求助10
13秒前
14秒前
15秒前
老实用户完成签到 ,获得积分10
16秒前
Sakura完成签到 ,获得积分10
16秒前
hui发布了新的文献求助10
16秒前
满意的迎南完成签到 ,获得积分10
17秒前
苗条小霸王完成签到,获得积分10
17秒前
康康发布了新的文献求助10
17秒前
18秒前
粗犷的世平完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403