Expanded feature space-based gradient boosting ensemble learning for risk prediction of type 2 diabetes complications

Boosting(机器学习) 梯度升压 集成学习 计算机科学 决策树 机器学习 人工智能 特征(语言学) 集合预报 数据挖掘 随机森林 语言学 哲学
作者
Yiran Wang,Sutong Wang,Xiutian Sima,Yu Song,Shaoze Cui,Dujuan Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:144: 110451-110451
标识
DOI:10.1016/j.asoc.2023.110451
摘要

As a metabolic disease, diabetes is a serious threat to human health, in which type 2 diabetes (T2D) constitutes about 90% of diabetic cases. As the disease progresses, T2D often comes with various complications such as kidney disease and retinopathy, which may cause huge threats to patients’ health. In recent years, complication prediction of T2D has gained wide research interest as early disease detection and management can effectively reduce the risk of death. In this paper, to break through the limitation of the available data and achieve higher overall prediction accuracy, an improved feature space-based gradient boosting regression tree ensemble (IFS-GBRTE) approach is proposed for the risk prediction of developing T2D complications. Specifically, the original feature space is expanded based on existing feature generation theories. Then the new feature space is refined by comparing the total contribution of each feature during the construction of a classification and regression tree (CART) under a cross-validation scheme. Finally, a gradient boosting ensemble algorithm using CART as base learners is utilized for model training. The prediction model is validated on the T2D data provided by the China National Clinical Medical Science Data Center. The experimental results show that the proposed IFS-GBRTE achieves 82.49% accuracy and realizes better generalization ability than compared single models and ensemble learning models, meanwhile it is helpful to obtain more effective predictive variables for improving the accuracy of risk prediction of T2D complications, which is of great significance for achieving the early prevention, screening and nursing of complications, and further reducing mortality and save medical resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助camellia采纳,获得10
1秒前
小二郎应助无情的白桃采纳,获得10
1秒前
1秒前
研友_Zb1rln完成签到,获得积分10
3秒前
健身boy完成签到,获得积分10
3秒前
盛京烟雨行完成签到 ,获得积分10
3秒前
3秒前
心灵美的大山完成签到,获得积分10
3秒前
3秒前
yuan发布了新的文献求助10
4秒前
诚心八宝粥完成签到,获得积分10
4秒前
5秒前
艺术家完成签到 ,获得积分10
6秒前
6秒前
6秒前
DreamMaker完成签到 ,获得积分10
6秒前
自由完成签到 ,获得积分10
6秒前
请勿继续发布了新的文献求助10
6秒前
聪明宛菡完成签到 ,获得积分10
7秒前
搜集达人应助木子采纳,获得10
8秒前
英姑应助伊丽莎白打工采纳,获得10
8秒前
9秒前
李浓发布了新的文献求助10
9秒前
长情绿凝完成签到,获得积分10
9秒前
9秒前
9秒前
FashionBoy应助科研废物采纳,获得10
10秒前
Ava应助zzznznnn采纳,获得10
10秒前
2799完成签到,获得积分10
10秒前
家家完成签到 ,获得积分10
11秒前
小牛同志完成签到,获得积分10
11秒前
11秒前
11秒前
西瓜霜完成签到 ,获得积分10
11秒前
深情安青应助aaaaa采纳,获得10
12秒前
12秒前
自由的过客完成签到,获得积分10
13秒前
转角一起走完成签到,获得积分20
13秒前
22完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759