Expanded feature space-based gradient boosting ensemble learning for risk prediction of type 2 diabetes complications

Boosting(机器学习) 梯度升压 集成学习 计算机科学 决策树 机器学习 人工智能 特征(语言学) 集合预报 数据挖掘 随机森林 语言学 哲学
作者
Yiran Wang,Sutong Wang,Xiutian Sima,Yu Song,Shaoze Cui,Dujuan Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:144: 110451-110451
标识
DOI:10.1016/j.asoc.2023.110451
摘要

As a metabolic disease, diabetes is a serious threat to human health, in which type 2 diabetes (T2D) constitutes about 90% of diabetic cases. As the disease progresses, T2D often comes with various complications such as kidney disease and retinopathy, which may cause huge threats to patients’ health. In recent years, complication prediction of T2D has gained wide research interest as early disease detection and management can effectively reduce the risk of death. In this paper, to break through the limitation of the available data and achieve higher overall prediction accuracy, an improved feature space-based gradient boosting regression tree ensemble (IFS-GBRTE) approach is proposed for the risk prediction of developing T2D complications. Specifically, the original feature space is expanded based on existing feature generation theories. Then the new feature space is refined by comparing the total contribution of each feature during the construction of a classification and regression tree (CART) under a cross-validation scheme. Finally, a gradient boosting ensemble algorithm using CART as base learners is utilized for model training. The prediction model is validated on the T2D data provided by the China National Clinical Medical Science Data Center. The experimental results show that the proposed IFS-GBRTE achieves 82.49% accuracy and realizes better generalization ability than compared single models and ensemble learning models, meanwhile it is helpful to obtain more effective predictive variables for improving the accuracy of risk prediction of T2D complications, which is of great significance for achieving the early prevention, screening and nursing of complications, and further reducing mortality and save medical resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tan发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Witness发布了新的文献求助10
1秒前
Ting完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
小蘑菇应助Islet采纳,获得10
3秒前
mjje发布了新的文献求助10
3秒前
miksimet2005发布了新的文献求助10
4秒前
Owen应助Rixxed采纳,获得10
4秒前
小菜狗发布了新的文献求助10
4秒前
岳岳岳发布了新的文献求助10
4秒前
小王时完成签到,获得积分10
4秒前
科研通AI2S应助平淡凝竹采纳,获得10
5秒前
terry发布了新的文献求助10
5秒前
Littboshi发布了新的文献求助50
6秒前
糟糕的颜完成签到 ,获得积分10
7秒前
项人发布了新的文献求助10
7秒前
tangyu12发布了新的文献求助10
10秒前
wanci应助茶米采纳,获得10
10秒前
朴实颤发布了新的文献求助10
11秒前
11秒前
善学以致用应助meng采纳,获得10
11秒前
山茶完成签到 ,获得积分20
11秒前
lkkkkkk完成签到,获得积分20
12秒前
13秒前
星辰大海应助ljh采纳,获得10
13秒前
DHY发布了新的文献求助30
13秒前
xinxin发布了新的文献求助10
13秒前
13秒前
可靠的安寒完成签到,获得积分10
14秒前
鲤鱼翼完成签到 ,获得积分10
14秒前
Vannie完成签到,获得积分10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
星辰大海应助Ashore采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784558
求助须知:如何正确求助?哪些是违规求助? 5682922
关于积分的说明 15464566
捐赠科研通 4913664
什么是DOI,文献DOI怎么找? 2644848
邀请新用户注册赠送积分活动 1592770
关于科研通互助平台的介绍 1547187