吸附
膜
普鲁士蓝
铊
选择性
化学
杂质
废水
纳米颗粒
腐植酸
化学工程
膜技术
离解常数
离子
胶体
污水处理
无机化学
高分子
材料科学
平衡常数
水处理
有机质
黄腐酸
微量
稳健性(进化)
作者
Yiwen Shi,Lei Huang,Sakil Mahmud,Gaosheng Zhang,Huosheng Li,Yuqi Wang,Tangfu Xiao,Qingyi Zeng,Zhiquan Liu,Huarong Yu,Zhu Xiong
标识
DOI:10.1016/j.cej.2022.138712
摘要
The exploitation of advanced material technology with high selectivity, efficiency, and separability for thallium (Tl) removal remains challenging. In this work, a hybrid polytetrafluroethylene membrane with polydopamine (PDA)/polyethyleneimine (PEI) co-supported Prussian blue nanoparticles (PB NPs) was successfully fabricated and denoted as PB@PDA/PEI-M−1. The PB@PDA/PEI-M−1 displayed a high-efficient capture for Tl(I) during a continuous flowing operation. Based on the pseudo-second-order model, its dynamic Tl(I)-adsorption constant (k) and maximum capacity (qe) are 1.8 min−1 and 460.4 mg/m2 respectively, which are both much higher than the static adsorption and many previous studies. Tl(I)-adsorption capacity of PB@PDA/PEI-M−1 was slightly decreased by the disturbances of many accompanying impurity ions (H+, Ca2+ or Mg2+), but it still reached a high level. The density functional theory (DFT) revealed the most prominent binding ability of membrane surface-loaded PB with Tl(I) via ion exchanges, contributing to the high selectivity of PB@PDA/PEI-M−1 in capturing trace Tl(I). As for the macromolecular organic matter, humic acid (HA) facilitated the Tl(I)-capture ability of PB@PDA/PEI-M−1 due to the formation of Tl-HA complexes and their high adsorption on membrane surface. By virtue of those advantages, our as-prepared membranes exhibit excellent ability in remedying the actual Tl(I)-polluted pearl river water, and in the meantime, membrane structure robustness was well maintained. All results verified that PB@PDA/PEI-M−1 provided a feasible technology for Tl(I) removal in a complicated environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI