Inner Cascaded U2-Net: An Improvement to Plain Cascaded U-Net

分割 网(多面体) 计算机科学 人工智能 特征(语言学) 块(置换群论) 模式识别(心理学) 残余物 算法 数学 几何学 语言学 哲学
作者
Wenbin Wu,Guanjun Liu,Kaiyi Liang,Hui Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Computers, Materials and Continua (Tech Science Press)]
卷期号:134 (2): 1323-1335 被引量:2
标识
DOI:10.32604/cmes.2022.020428
摘要

Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction. U-Net has been the baseline model since the very beginning due to a symmetrical U-structure for better feature extraction and fusing and suitable for small datasets. To enhance the segmentation performance of U-Net, cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine. However, the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the latter one. In this article, we devise novel Inner Cascaded U-Net and Inner Cascaded U2-Net as improvements to plain cascaded U-Net for medical image segmentation. The proposed Inner Cascaded U-Net adds inner nested connections between two U-Nets to share more contextual information. To further boost segmentation performance, we propose Inner Cascaded U2-Net, which applies residual U-block to capture more global contextual information from different scales. The proposed models can be trained from scratch in an end-to-end fashion and have been evaluated on Multimodal Brain Tumor Segmentation Challenge (BraTS) 2013 and ISBI Liver Tumor Segmentation Challenge (LiTS) dataset in comparison to related U-Net, cascaded U-Net, U-Net++, U2-Net and state-of-the-art methods. Our experiments demonstrate that our proposed Inner Cascaded U-Net and Inner Cascaded U2-Net achieve better segmentation performance in terms of dice similarity coefficient and hausdorff distance as well as get finer outline segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丰富的龙猫完成签到,获得积分10
1秒前
内向秋寒完成签到,获得积分10
1秒前
2秒前
4秒前
啦啦啦发布了新的文献求助10
6秒前
7秒前
9秒前
北雁发布了新的文献求助10
10秒前
思源应助开心便当采纳,获得10
10秒前
fifteen发布了新的文献求助10
10秒前
11秒前
zhangqi发布了新的文献求助10
13秒前
13秒前
没所谓发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
雪白安筠发布了新的文献求助10
16秒前
张聪发布了新的文献求助20
17秒前
香蕉觅云应助strong.quite采纳,获得10
18秒前
PJN发布了新的文献求助10
18秒前
戴煜亚发布了新的文献求助20
19秒前
20秒前
20秒前
迷路尔曼发布了新的文献求助10
21秒前
果嘉发布了新的文献求助20
22秒前
啦啦啦完成签到,获得积分10
24秒前
24秒前
风中的安珊完成签到,获得积分10
24秒前
安代桃发布了新的文献求助10
25秒前
开朗半梅发布了新的文献求助30
25秒前
所所应助眯眯眼的青文采纳,获得10
25秒前
鱼鱼鱼发布了新的文献求助10
25秒前
26秒前
顾矜应助宋致力采纳,获得10
26秒前
26秒前
26秒前
27秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153887
求助须知:如何正确求助?哪些是违规求助? 2804911
关于积分的说明 7862225
捐赠科研通 2462979
什么是DOI,文献DOI怎么找? 1311070
科研通“疑难数据库(出版商)”最低求助积分说明 629429
版权声明 601821