Inner Cascaded U2-Net: An Improvement to Plain Cascaded U-Net

分割 网(多面体) 计算机科学 人工智能 特征(语言学) 块(置换群论) 模式识别(心理学) 残余物 算法 数学 几何学 语言学 哲学
作者
Wenbin Wu,Guanjun Liu,Kaiyi Liang,Hui Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Computers, Materials and Continua (Tech Science Press)]
卷期号:134 (2): 1323-1335 被引量:7
标识
DOI:10.32604/cmes.2022.020428
摘要

Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction. U-Net has been the baseline model since the very beginning due to a symmetrical U-structure for better feature extraction and fusing and suitable for small datasets. To enhance the segmentation performance of U-Net, cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine. However, the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the latter one. In this article, we devise novel Inner Cascaded U-Net and Inner Cascaded U2-Net as improvements to plain cascaded U-Net for medical image segmentation. The proposed Inner Cascaded U-Net adds inner nested connections between two U-Nets to share more contextual information. To further boost segmentation performance, we propose Inner Cascaded U2-Net, which applies residual U-block to capture more global contextual information from different scales. The proposed models can be trained from scratch in an end-to-end fashion and have been evaluated on Multimodal Brain Tumor Segmentation Challenge (BraTS) 2013 and ISBI Liver Tumor Segmentation Challenge (LiTS) dataset in comparison to related U-Net, cascaded U-Net, U-Net++, U2-Net and state-of-the-art methods. Our experiments demonstrate that our proposed Inner Cascaded U-Net and Inner Cascaded U2-Net achieve better segmentation performance in terms of dice similarity coefficient and hausdorff distance as well as get finer outline segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
细心冬日发布了新的文献求助10
1秒前
landewen完成签到 ,获得积分10
1秒前
huaming完成签到,获得积分10
1秒前
123_应助宇文书翠采纳,获得10
1秒前
1秒前
PigaChu完成签到,获得积分10
2秒前
Mat完成签到,获得积分10
2秒前
魔幻凡儿完成签到,获得积分10
2秒前
小段段完成签到,获得积分10
2秒前
yaya完成签到,获得积分10
2秒前
MISSIW完成签到,获得积分10
2秒前
ww发布了新的文献求助10
2秒前
甜甜亦巧完成签到,获得积分10
2秒前
2秒前
1111完成签到,获得积分10
3秒前
3秒前
zyf完成签到,获得积分10
4秒前
5秒前
bkagyin应助PigaChu采纳,获得10
5秒前
不懂白完成签到 ,获得积分10
6秒前
大个应助ZHONGJIAHAO采纳,获得10
6秒前
安详雅绿应助知性的雅彤采纳,获得10
6秒前
诸觅双完成签到 ,获得积分0
7秒前
是他完成签到 ,获得积分10
7秒前
皓民完成签到,获得积分10
7秒前
共享精神应助易今采纳,获得10
7秒前
千风完成签到,获得积分10
8秒前
薄荷心完成签到 ,获得积分10
8秒前
不睡啦完成签到,获得积分10
8秒前
8秒前
仙哥发布了新的文献求助10
9秒前
五块墓碑发布了新的文献求助10
9秒前
9秒前
9秒前
贝妮发布了新的文献求助10
10秒前
36456657应助luxiansheng采纳,获得10
10秒前
研友_VZG7GZ应助缥缈的绿兰采纳,获得10
11秒前
淡定碧玉发布了新的文献求助10
11秒前
碧蓝铁身发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665315
求助须知:如何正确求助?哪些是违规求助? 4875879
关于积分的说明 15112944
捐赠科研通 4824400
什么是DOI,文献DOI怎么找? 2582734
邀请新用户注册赠送积分活动 1536689
关于科研通互助平台的介绍 1495315