Inner Cascaded U2-Net: An Improvement to Plain Cascaded U-Net

分割 网(多面体) 计算机科学 人工智能 特征(语言学) 块(置换群论) 模式识别(心理学) 残余物 算法 数学 几何学 语言学 哲学
作者
Wenbin Wu,Guanjun Liu,Kaiyi Liang,Hui Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:134 (2): 1323-1335 被引量:7
标识
DOI:10.32604/cmes.2022.020428
摘要

Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction. U-Net has been the baseline model since the very beginning due to a symmetrical U-structure for better feature extraction and fusing and suitable for small datasets. To enhance the segmentation performance of U-Net, cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine. However, the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the latter one. In this article, we devise novel Inner Cascaded U-Net and Inner Cascaded U2-Net as improvements to plain cascaded U-Net for medical image segmentation. The proposed Inner Cascaded U-Net adds inner nested connections between two U-Nets to share more contextual information. To further boost segmentation performance, we propose Inner Cascaded U2-Net, which applies residual U-block to capture more global contextual information from different scales. The proposed models can be trained from scratch in an end-to-end fashion and have been evaluated on Multimodal Brain Tumor Segmentation Challenge (BraTS) 2013 and ISBI Liver Tumor Segmentation Challenge (LiTS) dataset in comparison to related U-Net, cascaded U-Net, U-Net++, U2-Net and state-of-the-art methods. Our experiments demonstrate that our proposed Inner Cascaded U-Net and Inner Cascaded U2-Net achieve better segmentation performance in terms of dice similarity coefficient and hausdorff distance as well as get finer outline segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
我是125完成签到,获得积分10
4秒前
那一片海完成签到,获得积分10
5秒前
阿a完成签到,获得积分10
5秒前
CodeCraft应助不安的小刺猬采纳,获得10
6秒前
安生安生完成签到 ,获得积分20
7秒前
筱晓完成签到,获得积分10
7秒前
海星完成签到,获得积分10
8秒前
8秒前
FTX完成签到 ,获得积分10
9秒前
筱晓发布了新的文献求助10
11秒前
sht应助蓝莓小蛋糕采纳,获得10
12秒前
12秒前
Tangerine发布了新的文献求助10
13秒前
汉堡包应助MaRin采纳,获得10
16秒前
柚子哈密瓜完成签到,获得积分10
16秒前
田様应助yydtly采纳,获得10
16秒前
17秒前
Yen发布了新的文献求助10
18秒前
19秒前
行走完成签到,获得积分10
20秒前
21秒前
23秒前
Yen完成签到,获得积分10
24秒前
龙腾岁月完成签到,获得积分10
25秒前
爆米花应助WN采纳,获得10
26秒前
moonbeam发布了新的文献求助10
26秒前
哒哒猪完成签到,获得积分10
28秒前
豪厉害完成签到,获得积分10
28秒前
机灵飞珍完成签到 ,获得积分10
29秒前
马66发布了新的文献求助10
29秒前
酷波er应助shinn采纳,获得10
29秒前
29秒前
yydtly完成签到,获得积分10
30秒前
田様应助任侠传采纳,获得10
31秒前
Jasper应助zzkka采纳,获得10
32秒前
哒哒猪发布了新的文献求助10
34秒前
35秒前
36秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967149
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163469
捐赠科研通 3247417
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450