Automatic Plane of Minimal Hiatal Dimensions Extraction From 3D Female Pelvic Floor Ultrasound

三维超声 盆底 耻骨联合 超声波 医学 分割 计算机视觉 计算机科学 人工智能 放射科 骨盆 解剖
作者
Wenyao Xia,Golafsoun Ameri,Djalal Fakim,Humayon Akhuanzada,Malik Z. Raza,S. Abbas Shobeiri,Linda McLean,Elvis C. S. Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3873-3883 被引量:6
标识
DOI:10.1109/tmi.2022.3199968
摘要

There is an increasing interest in the applications of 3D ultrasound imaging of the pelvic floor to improve the diagnosis, treatment, and surgical planning of female pelvic floor dysfunction (PFD). Pelvic floor biometrics are obtained on an oblique image plane known as the plane of minimal hiatal dimensions (PMHD). Identifying this plane requires the detection of two anatomical landmarks, the pubic symphysis and anorectal angle. The manual detection of the anatomical landmarks and the PMHD in 3D pelvic ultrasound requires expert knowledge of the pelvic floor anatomy, and is challenging, time-consuming, and subject to human error. These challenges have hindered the adoption of such quantitative analysis in the clinic. This work presents an automatic approach to identify the anatomical landmarks and extract the PMHD from 3D pelvic ultrasound volumes. To demonstrate clinical utility and a complete automated clinical task, an automatic segmentation of the levator-ani muscle on the extracted PMHD images was also performed. Experiments using 73 test images of patients during a pelvic muscle resting state showed that this algorithm has the capability to accurately identify the PMHD with an average Dice of 0.89 and an average mean boundary distance of 2.25mm. Further evaluation of the PMHD detection algorithm using 35 images of patients performing pelvic muscle contraction resulted in an average Dice of 0.88 and an average mean boundary distance of 2.75mm. This work had the potential to pave the way towards the adoption of ultrasound in the clinic and development of personalized treatment for PFD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助sci一点就通采纳,获得10
1秒前
1秒前
科研通AI6应助kaka采纳,获得10
2秒前
3秒前
orixero应助铛铛铛采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
科目三应助天阳采纳,获得10
4秒前
大碗完成签到,获得积分10
5秒前
5秒前
shen发布了新的文献求助10
5秒前
abcd完成签到,获得积分10
6秒前
传奇3应助adria采纳,获得10
6秒前
GGU完成签到,获得积分10
7秒前
彭于晏应助看文献了采纳,获得10
7秒前
D-Peng发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
zzc发布了新的文献求助10
10秒前
热心的送终完成签到 ,获得积分10
11秒前
馅饼完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
14秒前
14秒前
14秒前
JamesPei应助3719left采纳,获得10
15秒前
小y完成签到,获得积分10
15秒前
songjiatian发布了新的文献求助10
17秒前
17秒前
19秒前
Johnny完成签到,获得积分10
20秒前
Yuanyuan发布了新的文献求助10
20秒前
21秒前
22秒前
铛铛铛发布了新的文献求助10
22秒前
23秒前
Lijia_YAO发布了新的文献求助30
23秒前
传奇3应助杨贝贝采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729178
求助须知:如何正确求助?哪些是违规求助? 5316755
关于积分的说明 15316050
捐赠科研通 4876196
什么是DOI,文献DOI怎么找? 2619280
邀请新用户注册赠送积分活动 1568848
关于科研通互助平台的介绍 1525338