亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D vessel-like structure segmentation in medical images by an edge-reinforced network

体素 计算机科学 人工智能 分割 GSM演进的增强数据速率 模式识别(心理学) 图像分割 特征(语言学) 判别式 人工神经网络 编码器 计算机视觉 语言学 操作系统 哲学
作者
Likun Xia,Hao Zhang,Yufei Wu,Ran Song,Yuhui Ma,Lei Mou,Jiang Liu,Yixuan Xie,Ming Ma,Yitian Zhao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:82: 102581-102581 被引量:39
标识
DOI:10.1016/j.media.2022.102581
摘要

The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases' mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder-decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Suraim完成签到,获得积分10
3秒前
老石完成签到 ,获得积分10
7秒前
Antares完成签到,获得积分10
28秒前
Owen应助顺利甜瓜采纳,获得10
55秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
大胆菲音发布了新的文献求助30
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研蓝月发布了新的文献求助150
5分钟前
5分钟前
科研蓝月完成签到,获得积分10
5分钟前
5分钟前
我亦化身东海去完成签到,获得积分10
5分钟前
打打应助我亦化身东海去采纳,获得10
5分钟前
pursu发布了新的文献求助10
5分钟前
愉快的犀牛完成签到 ,获得积分10
6分钟前
Dengjia完成签到,获得积分20
6分钟前
Weiyu完成签到 ,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
TXZ06完成签到,获得积分10
7分钟前
kuoping完成签到,获得积分0
7分钟前
五五完成签到 ,获得积分10
8分钟前
9分钟前
共享精神应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
顺利甜瓜发布了新的文献求助10
9分钟前
鲤鱼山人完成签到 ,获得积分10
9分钟前
顺利甜瓜完成签到,获得积分10
9分钟前
张来完成签到 ,获得积分10
9分钟前
洒脱完成签到,获得积分10
10分钟前
AA完成签到 ,获得积分10
10分钟前
10分钟前
陈宇发布了新的文献求助10
10分钟前
orixero应助陈宇采纳,获得10
10分钟前
陈宇完成签到,获得积分10
10分钟前
duan完成签到 ,获得积分10
11分钟前
点点完成签到 ,获得积分10
11分钟前
科研通AI6应助科研通管家采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357350
求助须知:如何正确求助?哪些是违规求助? 4488767
关于积分的说明 13972523
捐赠科研通 4390037
什么是DOI,文献DOI怎么找? 2411854
邀请新用户注册赠送积分活动 1404415
关于科研通互助平台的介绍 1378666