3D vessel-like structure segmentation in medical images by an edge-reinforced network

体素 计算机科学 人工智能 分割 GSM演进的增强数据速率 模式识别(心理学) 图像分割 特征(语言学) 判别式 人工神经网络 编码器 计算机视觉 语言学 操作系统 哲学
作者
Likun Xia,Hao Zhang,Yufei Wu,Ran Song,Yuhui Ma,Lei Mou,Jiang Liu,Yixuan Xie,Ming Ma,Yitian Zhao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:82: 102581-102581 被引量:39
标识
DOI:10.1016/j.media.2022.102581
摘要

The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases' mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder-decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨杨onng发布了新的文献求助30
1秒前
yzm完成签到,获得积分10
1秒前
玄风发布了新的文献求助10
1秒前
Lavender完成签到,获得积分20
1秒前
xyzlancet发布了新的文献求助10
2秒前
Oasis完成签到,获得积分10
2秒前
隐形曼青应助欣喜战斗机采纳,获得10
2秒前
呜呼发布了新的文献求助10
3秒前
亦犹未进完成签到,获得积分10
3秒前
jjj发布了新的文献求助30
3秒前
4秒前
4秒前
斯文败类应助祝余采纳,获得10
4秒前
852应助SCO采纳,获得10
5秒前
jun发布了新的文献求助10
7秒前
7秒前
7秒前
研友_VZGooZ发布了新的文献求助10
7秒前
xie完成签到,获得积分10
8秒前
辞忧完成签到,获得积分10
8秒前
NexusExplorer应助芭乐采纳,获得10
8秒前
斯文败类应助芭乐采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
科目三应助小白采纳,获得10
12秒前
13秒前
13秒前
lmn发布了新的文献求助10
13秒前
流也发布了新的文献求助10
14秒前
xie发布了新的文献求助10
14秒前
方源应助Philip采纳,获得10
14秒前
14秒前
15秒前
沈樾发布了新的文献求助10
15秒前
高强完成签到,获得积分10
15秒前
907发布了新的文献求助10
16秒前
Orange应助七七采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233