A Log-Logistic Predictor for Power Generation in Photovoltaic Systems

光伏系统 环境科学 辐照度 太阳辐照度 发电 统计 均方误差 线性回归 气象学 功率(物理) 可靠性工程 环境工程 数学 工程类 电气工程 地理 物理 量子力学
作者
Guilherme G. Souza,Ricardo Santos,Erlandson Ferreira Saraiva
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:15 (16): 5973-5973 被引量:3
标识
DOI:10.3390/en15165973
摘要

Photovoltaic (PV) systems are dependent on solar irradiation and environmental temperature to achieve their best performance. One of the challenges in the photovoltaic industry is performing maintenance as soon as a system is not working at its full generation capacity. The lack of a proper maintenance schedule affects power generation performance and can also decrease the lifetime of photovoltaic modules. Regarding the impact of environmental variables on the performance of PV systems, research has shown that soiling is the third most common reason for power loss in photovoltaic power plants, after solar irradiance and environmental temperature. This paper proposes a new statistical predictor for forecasting PV power generation by measuring environmental variables and the estimated mass particles (soiling) on the PV system. Our proposal was based on the fit of a nonlinear mixed-effects model, according to a log-logistic function. Two advantages of this approach are that it assumes a nonlinear relationship between the generated power and the environmental conditions (solar irradiance and the presence of suspended particulates) and that random errors may be correlated since the power generation measurements are recorded longitudinally. We evaluated the model using a dataset comprising environmental variables and power samples that were collected from October 2019 to April 2020 in a PV power plant in mid-west Brazil. The fitted model presented a maximum mean squared error (MSE) of 0.0032 and a linear coefficient correlation between the predicted and observed values of 0.9997. The estimated average daily loss due to soiling was 1.4%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王秋婷发布了新的文献求助10
1秒前
张雷应助谨慎采白采纳,获得20
2秒前
2秒前
李浩能发布了新的文献求助10
2秒前
2秒前
鹤川完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
月下荷花发布了新的文献求助10
3秒前
4秒前
4秒前
感动的红酒应助矮小的珠采纳,获得10
4秒前
蒲公英发布了新的文献求助10
5秒前
sly完成签到,获得积分20
5秒前
5秒前
5秒前
明理青柏发布了新的文献求助10
6秒前
Logan发布了新的文献求助10
6秒前
6秒前
目分发布了新的文献求助20
7秒前
pluto应助穆紫研采纳,获得10
7秒前
fym完成签到,获得积分10
7秒前
Mine完成签到,获得积分10
7秒前
xuan完成签到,获得积分10
7秒前
缓慢的易梦完成签到,获得积分10
8秒前
8秒前
直率钢笔发布了新的文献求助10
8秒前
EH完成签到,获得积分10
9秒前
9秒前
彭于晏应助sun采纳,获得10
9秒前
9秒前
耍酷曼雁发布了新的文献求助30
9秒前
JJ发布了新的文献求助10
9秒前
FW完成签到,获得积分10
9秒前
笨笨芯发布了新的文献求助10
10秒前
krsL发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061