A Log-Logistic Predictor for Power Generation in Photovoltaic Systems

光伏系统 环境科学 辐照度 太阳辐照度 发电 统计 均方误差 线性回归 气象学 功率(物理) 可靠性工程 环境工程 数学 工程类 电气工程 地理 物理 量子力学
作者
Guilherme G. Souza,Ricardo Santos,Erlandson Ferreira Saraiva
出处
期刊:Energies [MDPI AG]
卷期号:15 (16): 5973-5973 被引量:3
标识
DOI:10.3390/en15165973
摘要

Photovoltaic (PV) systems are dependent on solar irradiation and environmental temperature to achieve their best performance. One of the challenges in the photovoltaic industry is performing maintenance as soon as a system is not working at its full generation capacity. The lack of a proper maintenance schedule affects power generation performance and can also decrease the lifetime of photovoltaic modules. Regarding the impact of environmental variables on the performance of PV systems, research has shown that soiling is the third most common reason for power loss in photovoltaic power plants, after solar irradiance and environmental temperature. This paper proposes a new statistical predictor for forecasting PV power generation by measuring environmental variables and the estimated mass particles (soiling) on the PV system. Our proposal was based on the fit of a nonlinear mixed-effects model, according to a log-logistic function. Two advantages of this approach are that it assumes a nonlinear relationship between the generated power and the environmental conditions (solar irradiance and the presence of suspended particulates) and that random errors may be correlated since the power generation measurements are recorded longitudinally. We evaluated the model using a dataset comprising environmental variables and power samples that were collected from October 2019 to April 2020 in a PV power plant in mid-west Brazil. The fitted model presented a maximum mean squared error (MSE) of 0.0032 and a linear coefficient correlation between the predicted and observed values of 0.9997. The estimated average daily loss due to soiling was 1.4%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Renhong采纳,获得10
刚刚
隐形曼青应助oops采纳,获得10
刚刚
3秒前
乐乐应助江峰采纳,获得10
3秒前
3秒前
妮妮发布了新的文献求助10
4秒前
刻苦熊猫应助陌君子筱采纳,获得10
4秒前
传奇3应助陌君子筱采纳,获得10
4秒前
所所应助陌君子筱采纳,获得10
4秒前
5秒前
5秒前
6秒前
养生坤坤完成签到,获得积分20
8秒前
8秒前
gzqimu发布了新的文献求助10
8秒前
8秒前
8秒前
fdfdfd发布了新的文献求助10
8秒前
dd完成签到,获得积分20
9秒前
精灵夜雨应助齐俞如采纳,获得10
9秒前
白1完成签到 ,获得积分10
9秒前
xuxuxuuxuxux完成签到,获得积分10
9秒前
cff发布了新的文献求助10
9秒前
mozhi发布了新的文献求助10
10秒前
领导范儿应助负责的秋莲采纳,获得10
10秒前
12秒前
苹果易真发布了新的文献求助10
13秒前
叮咚完成签到,获得积分10
13秒前
奇异果完成签到,获得积分10
14秒前
dd发布了新的文献求助30
14秒前
wangyue发布了新的文献求助10
16秒前
积极慕梅应助冰bing采纳,获得10
16秒前
17秒前
17秒前
叮咚发布了新的文献求助20
20秒前
搜集达人应助苹果易真采纳,获得10
21秒前
ll发布了新的文献求助10
21秒前
墨风发布了新的文献求助10
21秒前
hsbuuwqbdubeq完成签到 ,获得积分10
23秒前
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150003
求助须知:如何正确求助?哪些是违规求助? 2801002
关于积分的说明 7843063
捐赠科研通 2458575
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721