A Log-Logistic Predictor for Power Generation in Photovoltaic Systems

光伏系统 环境科学 辐照度 太阳辐照度 发电 统计 均方误差 线性回归 气象学 功率(物理) 可靠性工程 环境工程 数学 工程类 电气工程 地理 物理 量子力学
作者
Guilherme G. Souza,Ricardo Santos,Erlandson Ferreira Saraiva
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:15 (16): 5973-5973 被引量:3
标识
DOI:10.3390/en15165973
摘要

Photovoltaic (PV) systems are dependent on solar irradiation and environmental temperature to achieve their best performance. One of the challenges in the photovoltaic industry is performing maintenance as soon as a system is not working at its full generation capacity. The lack of a proper maintenance schedule affects power generation performance and can also decrease the lifetime of photovoltaic modules. Regarding the impact of environmental variables on the performance of PV systems, research has shown that soiling is the third most common reason for power loss in photovoltaic power plants, after solar irradiance and environmental temperature. This paper proposes a new statistical predictor for forecasting PV power generation by measuring environmental variables and the estimated mass particles (soiling) on the PV system. Our proposal was based on the fit of a nonlinear mixed-effects model, according to a log-logistic function. Two advantages of this approach are that it assumes a nonlinear relationship between the generated power and the environmental conditions (solar irradiance and the presence of suspended particulates) and that random errors may be correlated since the power generation measurements are recorded longitudinally. We evaluated the model using a dataset comprising environmental variables and power samples that were collected from October 2019 to April 2020 in a PV power plant in mid-west Brazil. The fitted model presented a maximum mean squared error (MSE) of 0.0032 and a linear coefficient correlation between the predicted and observed values of 0.9997. The estimated average daily loss due to soiling was 1.4%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tczw667完成签到,获得积分10
1秒前
1秒前
勤恳慕蕊发布了新的文献求助20
1秒前
hqz发布了新的文献求助10
2秒前
tcmlida发布了新的文献求助10
3秒前
Yu发布了新的文献求助10
3秒前
warry完成签到 ,获得积分10
4秒前
luluyang完成签到,获得积分10
6秒前
Orange应助麦麦泰采纳,获得10
6秒前
6秒前
斯文败类应助喵喵采纳,获得10
7秒前
7秒前
隐形曼青应助kevin采纳,获得10
9秒前
Esther发布了新的文献求助10
9秒前
特来骑完成签到,获得积分10
9秒前
蜡笔小新完成签到 ,获得积分10
9秒前
高梦祥完成签到,获得积分10
10秒前
领导范儿应助fsw采纳,获得10
10秒前
Akim应助早日毕业脱离苦海采纳,获得10
10秒前
10秒前
11秒前
11秒前
华子的五A替身完成签到,获得积分10
11秒前
刘保彤发布了新的文献求助10
11秒前
11秒前
11秒前
拼搏从灵完成签到,获得积分10
12秒前
12秒前
卡尔发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
rosen完成签到 ,获得积分10
14秒前
谦让的傲芙完成签到,获得积分10
15秒前
15秒前
16秒前
crank发布了新的文献求助10
16秒前
Rita发布了新的文献求助30
16秒前
huanghanjing发布了新的文献求助10
17秒前
诚心的电话完成签到 ,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017460
求助须知:如何正确求助?哪些是违规求助? 4257073
关于积分的说明 13267567
捐赠科研通 4061370
什么是DOI,文献DOI怎么找? 2221225
邀请新用户注册赠送积分活动 1230555
关于科研通互助平台的介绍 1153161