阴极
水溶液
电化学
材料科学
锰
化学工程
锌
氧化物
电池(电)
储能
金属
电极
化学
冶金
物理化学
有机化学
热力学
功率(物理)
工程类
物理
作者
Kaidi Wang,Gaoli Guo,Xiaoping Tan,Leilei Zheng,Huang Zhang
标识
DOI:10.1016/j.cej.2022.139059
摘要
The tunnel-type sodium manganese oxide (Na0.44MnO2) materials are considered as promising cathode candidates for rechargeable batteries due to their low cost and sustainability. However, the direct implementation in aqueous batteries, as an emerging energy storage technology, was not fully realized in terms of the reversibility and long-cycling stability. Herein, the tunnel-type Ti-substituted Na0.44MnO2 (NMTO) is investigated as a cathode material for aqueous zinc-metal batteries. It is identified that the Ti-substitution has a significant effect on improving its rate capability and cycling stability. As a result, the optimal Na0.44Mn0.78Ti0.22O2 (NMTO-0.22) material exhibits a reversible capacity of 109.6 mAh/g at 1.0 A g−1, and 71% of the initial capacity can be retained after 2400 cycles. Such performance can be attributed to the enhanced insertion mechanisms in the tunnel structure, as verified by the post-mortem spectroscopic and microscopic techniques. Density functional theory (DFT) calculations enclose that the average charge density in Mn 3d orbits near the Fermi level and Mn participation in redox reaction are improved after Ti-substitution, supporting the facilitated electrochemical kinetics of NMTO. This work demonstrates that the Ti-substituted Na0.44MnO2 is a promising cathode material for aqueous zinc-metal batteries, and provides a fundamental understanding on the charge storage mechanisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI