结晶
成核
材料科学
碳纳米管
复合材料
聚酰胺
化学工程
竞赛(生物学)
纳米管
化学
有机化学
工程类
生态学
生物
作者
Anne M. Gohn,Xiaoshi Zhang,Alexander McHale,René Androsch,Alicyn M. Rhoades
标识
DOI:10.1002/marc.202200418
摘要
Both heterogeneous nucleation and flow-induced entropy reduction are the two well-known factors that accelerate polymer crystallization. However, the interplay of nucleation and flow-induced acceleration is still poorly understood. This work investigates the nucleating effect of carbon nanotubes (CNT) on both the quiescent and flow-induced crystallization kinetics of polyamide 66 (PA 66). The quiescent crystallization study indicates that CNT acts as a powerful nucleant, as suggested by the fact that the critical cooling rate to bypass crystallization and create the amorphous glassy state changes from 1000 K s-1 in PA 66 neat resin to a rate faster than 4000 K s-1 in the PA 66 nanocomposites. The flow-induced crystallization study indicates PA 66 onset crystallization time and morphology depend on the shear work introduced by rotational rheometry. A combined acceleration effect from CNT nucleants and flow-induced crystallization (FIC) persists when the CNT loading is under the saturation limit. However, if CNT loading meets the saturation limit, specific shear work shows no impact on the crystallization time, providing evidence that the role of the FIC acceleration effect no longer exists when nucleant acceleration dominates the crystallization of PA 66.
科研通智能强力驱动
Strongly Powered by AbleSci AI