Maize hybrid yield and physiological response to plant density across four decades in China

混合的 农学 植物密度 生物 人口 水槽(地理) 限制 产量(工程) 人口密度 作物产量 叶面积指数 播种 地理 人口学 社会学 冶金 材料科学 工程类 机械工程 地图学
作者
He Pin,Xiangpeng Ding,Jing Bai,Jiwang Zhang,Peng Liu,Baizhao Ren,Bin Zhao
出处
期刊:Agronomy Journal [Wiley]
卷期号:114 (5): 2886-2904 被引量:7
标识
DOI:10.1002/agj2.21124
摘要

Abstract The popularity of density‐tolerant maize ( Zea mays L.) hybrids greatly increased the yield of maize hybrids in China in recent years. Clarifying trends in yield and plant density responses of agronomic characters of maize hybrids released in different years can provide theoretical and practical guidance for breeding high‐yield and density‐tolerant maize hybrids. The results showed grain yield (GY) of maize hybrids released in the 1970s and 1980s decreased with increased plant density. But GY of maize hybrids released in the 1990s and 2000s increased with a plant density increase. The GY gains from the low to high plant density plots were 86, 135, and 198 kg ha –1 per year, respectively. In all plant density treatments, yield and biomass of newer hybrids (2000s) were significantly higher than those of older hybrids (1970s). The leaf area index (LAI) of maize hybrids released in different years (1970s ∼ 2000s) increased with plant density, whereas the extinction coefficient decreased. Compared with the old hybrids, new hybrids have larger population sink capacity and stronger source supply ability, which is more prominent under high density. Population sink capacity is the main factor limiting maize yield. The key to maize hybrid improvement is to increase the population sink capacity. Breeders should continue to select for hybrids under stressful and high plant density conditions to increase seed setting rate and decrease empty ear rate of maize hybrids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助jxcandice采纳,获得10
刚刚
factor发布了新的文献求助10
刚刚
1秒前
泊声发布了新的文献求助20
1秒前
narthon完成签到 ,获得积分10
1秒前
梦幻完成签到,获得积分10
1秒前
1604531786完成签到,获得积分10
1秒前
研友_LMNjkn发布了新的文献求助10
2秒前
xiao发布了新的文献求助10
2秒前
ww发布了新的文献求助10
2秒前
3秒前
Olsters发布了新的文献求助10
3秒前
深情安青应助该睡觉啦采纳,获得10
3秒前
3秒前
SEV完成签到,获得积分20
3秒前
愉快迎荷完成签到,获得积分10
4秒前
矮小的聪展完成签到,获得积分10
5秒前
factor完成签到,获得积分10
5秒前
Hello应助李来仪采纳,获得10
6秒前
SEV发布了新的文献求助10
6秒前
6秒前
6秒前
坚强亦丝应助隐形机器猫采纳,获得10
7秒前
小马甲应助SCI采纳,获得10
8秒前
老疯智发布了新的文献求助10
8秒前
sweetbearm应助通~采纳,获得10
8秒前
神凰完成签到,获得积分10
8秒前
Z小姐发布了新的文献求助10
9秒前
NexusExplorer应助白泽采纳,获得10
9秒前
10秒前
10秒前
火星上妙梦完成签到 ,获得积分10
10秒前
赘婿应助mayungui采纳,获得10
10秒前
贾不可发布了新的文献求助10
11秒前
英俊梦槐发布了新的文献求助30
11秒前
Xu完成签到,获得积分10
12秒前
12秒前
秀丽千山完成签到,获得积分10
12秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794