电极
材料科学
纳米技术
电解质
枝晶(数学)
储能
剥离(纤维)
金属
电镀(地质)
冶金
复合材料
化学
地质学
功率(物理)
物理化学
几何学
物理
量子力学
数学
地球物理学
作者
Haomiao Li,Yi Shen,Zhuchan Zhang,Anran Cheng,Kangli Wang,Xianbo Zhou,Peng Cai,Yujie Zhang,Mengjun Li,Min Zhou,Wei Wang,Ruxing Wang,Kai Jiang
标识
DOI:10.23919/ien.2022.0029
摘要
High-specific-energy batteries with long-lifespan are the development aspiration for energy storage applications. Metal electrodes with high specific capacity and low reduction potential are potential candidates for next-generation high-specific-energy batteries. Nevertheless, the stability of the metal electrode batteries is constantly suffered from the unstable interface issue during the plating/stripping process, such as dendrite formation, dynamic evolution of solid electrolyte interphase, and other accompanied side reactions. To solve these challenges, numerous researches have been intensively studied based on the interfacial engineering of metal electrodes, including electrode configuration optimization, interfacial chemistry regulation and solid-solid interface construction, and the recent progress is elaborately introduced in this paper. Nevertheless, the dendrite issues cannot be entirely prohibited in solid metal electrodes, which motivate the search for potential alternatives. Liquid-metal electrodes with completely reversible structural changes and high mass transfer rate are rendered as an effective approach to solve the dendrite problem. Therefore, the development of liquid metal electrode batteries is reviewed in this paper, in which the interfacial issues are explicated and some commendable achievements are summarized. In the end, the implementation of interfacial engineering and the development roadmap of the metal electrode batteries are prospected.
科研通智能强力驱动
Strongly Powered by AbleSci AI