基底外侧杏仁核
神经科学
抑制性突触后电位
加巴能
兴奋性突触后电位
运动前神经元活动
扁桃形结构
乙酰胆碱
帕尔瓦布明
血管活性肠肽
生物
内分泌学
神经肽
内科学
受体
医学
作者
Yann S. Mineur,Tenna N. Mose,Kathrine Lefoli Maibom,Steven T. Pittenger,Alexa R. Soares,Hao Wu,Seth R. Taylor,Yaqing Huang,Marina R. Picciotto
标识
DOI:10.1038/s41380-022-01749-7
摘要
The balance between excitatory and inhibitory (E/I) signaling is important for maintaining homeostatic function in the brain. Indeed, dysregulation of inhibitory GABA interneurons in the amygdala has been implicated in human mood disorders. We hypothesized that acetylcholine (ACh) signaling in the basolateral amygdala (BLA) might alter E/I balance resulting in changes in stress-sensitive behaviors. We therefore measured ACh release as well as activity of calmodulin-dependent protein kinase II (CAMKII)-, parvalbumin (PV)-, somatostatin (SOM)- and vasoactive intestinal protein (VIP)-expressing neurons in the BLA of awake, behaving male mice. ACh levels and activity of both excitatory and inhibitory BLA neurons increased when animals were actively coping, and decreased during passive coping, in the light–dark box, tail suspension and social defeat. Changes in neuronal activity preceded behavioral state transitions, suggesting that BLA activity may drive the shift in coping strategy. In contrast to exposure to escapable stressors, prolonging ACh signaling with a cholinesterase antagonist changed the balance of activity among BLA cell types, significantly increasing activity of VIP neurons and decreasing activity of SOM cells, with little effect on CaMKII or PV neurons. Knockdown of α7 or β2-containing nAChR subtypes in PV and SOM, but not CaMKII or VIP, BLA neurons altered behavioral responses to stressors, suggesting that ACh signaling through nAChRs on GABA neuron subtypes contributes to stress-induced changes in behavior. These studies show that ACh modulates the GABAergic signaling network in the BLA, shifting the balance between SOM, PV, VIP and CaMKII neurons, which are normally activated coordinately during active coping in response to stress. Thus, prolonging ACh signaling, as occurs in response to chronic stress, may contribute to maladaptive behaviors by shifting the balance of inhibitory signaling in the BLA.
科研通智能强力驱动
Strongly Powered by AbleSci AI