Enhancing industrial machinery maintenance through advanced fault and novelty detection using variational autoencoder and hybrid transformer model

自编码 新颖性 变压器 故障检测与隔离 新知识检测 计算机科学 可靠性工程 工程类 人工智能 人工神经网络 电气工程 心理学 电压 社会心理学 执行机构
作者
H. Hamdaoui,Looh Augustine Ngiejungbwen,Jinan Gu,Looh George Ashwehmbom,Shixi Tang,Wenbo Wang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251321764
摘要

In the context of Industry 4.0, new sensing and communication technologies have unlocked vast amounts of process data, offering significant potential for its transformation into actionable insights to support manufacturing decisions. The reliable detection and diagnosis of faults in rolling element bearings pose a significant challenge for condition-based maintenance and fault detection and diagnosis (FDD), which are critical strategies for enhancing equipment reliability and reducing operational costs. Deep learning methods, such as convolutional neural networks (CNNs), can extract features from vibration signals compared to traditional signal processing. However, these methods in isolation are insufficient to reliably detect novel fault conditions and faults in variable working environments. Also, existing novelty and anomaly detection criteria are not accurate enough to correctly distinguish novel or unseen faults. This study introduces a multi-fault detection framework leveraging a variational autoencoder with Mahalanobis distance (MD) novelty scores for unknown condition detection and a hybrid CNN-Swin transformer (Swin-T) model for incremental learning and fault classification. Using frequency-domain transformation and image-based representation of vibration signals, a hybrid model with a CNN-based feature extractor after projecting to the patch embedding layer of a simplified Swin-T model is trained incrementally with novel conditions to allow continuous learning and adaptation. Extensive validation with three separate datasets from fault simulation test rigs demonstrates the superior performance of the method over traditional and cutting-edge models in FDD and novelty detection (ND), achieving near-perfect accuracy (99.7%), precision (99.8%), recall (99.6%), and F1 score (99.7%). ND outperformed traditional approaches with an MD novelty score threshold yielding a true-positive rate of 98.9% and a false-positive rate of 1.2%. Additionally, incremental learning improved classification accuracy by up to 5.4% for newly introduced fault types, highlighting its adaptability. These results demonstrate the framework’s ability to enhance reliability and efficiency in industrial machinery maintenance by identifying both known and novel fault conditions with high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
盛宇大天才完成签到,获得积分10
2秒前
FIN应助mrhsdy采纳,获得30
2秒前
愉快的宛秋完成签到,获得积分10
2秒前
ccx完成签到,获得积分10
4秒前
zy完成签到 ,获得积分10
5秒前
濮阳盼曼完成签到,获得积分10
7秒前
单薄广山完成签到,获得积分10
7秒前
可盐够完成签到 ,获得积分20
7秒前
青黛完成签到 ,获得积分10
7秒前
guishouyu完成签到,获得积分10
8秒前
蓝天碧海小西服完成签到,获得积分0
9秒前
嗯是我完成签到,获得积分10
10秒前
小超超完成签到 ,获得积分10
13秒前
来了来了完成签到 ,获得积分10
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
Muccio完成签到 ,获得积分10
13秒前
贪玩的访风完成签到 ,获得积分10
15秒前
16秒前
寄语明月完成签到,获得积分10
17秒前
杨羕完成签到,获得积分10
18秒前
19秒前
谭玲慧完成签到 ,获得积分10
22秒前
大气糖豆完成签到 ,获得积分10
23秒前
Jason完成签到 ,获得积分10
23秒前
可盐够发布了新的文献求助10
26秒前
smlij616完成签到 ,获得积分10
28秒前
艾科研完成签到,获得积分10
30秒前
匆匆完成签到,获得积分10
30秒前
persist完成签到,获得积分10
31秒前
张三完成签到 ,获得积分10
32秒前
55完成签到,获得积分10
34秒前
甜甜圈完成签到 ,获得积分10
36秒前
xiaoxiao完成签到,获得积分10
36秒前
37秒前
奋斗的妙海完成签到 ,获得积分0
38秒前
机智的锦程完成签到 ,获得积分10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733511
求助须知:如何正确求助?哪些是违规求助? 3277654
关于积分的说明 10003735
捐赠科研通 2993737
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944