已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Autonomous UAV Obstacle Avoidance Trajectory Planning Method Based on Convex Optimized Particle Swarm Algorithm

避障 障碍物 粒子群优化 避碰 正多边形 计算机科学 群体行为 运动规划 算法 弹道 数学优化 计算机视觉 人工智能 移动机器人 数学 机器人 物理 地理 碰撞 几何学 计算机安全 考古 天文
作者
Jun Wang,B. S. Zou,Songtao Zhu,Yubo Gao,Ziyan Zhao
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425402463
摘要

The dynamics of unmanned aerial systems (UAS) are often nonlinear, especially at high speed and high maneuverability flight. The inherent nonlinearity of the system renders conventional linear control techniques inadequate for achieving optimal control outcomes. Consequently, unmanned aerial vehicle (UAV) trajectory planning is fundamentally a nonlinear optimal control challenge, characterized by the difficulty of swiftly obtaining a stable solution and the propensity to converge on suboptimal local solutions during the solving process. In response to this, a method for autonomous UAV obstacle avoidance trajectory planning is introduced, leveraging a convex optimization-based particle swarm algorithm. The UAV uses sensors to record the information about obstacles, adopts a one-dimensional time-parameterized polynomial trajectory to construct the obstacle avoidance control input, combines the safety penalty function between the navigation path and obstacles to generate the obstacle avoidance trajectory planning objective function, and obtains the path points in the obstacle avoidance trajectory; the particle swarm algorithm is used to solve the objective function, the parameters such as obstacle avoidance control input and safety penalty function are used as particles, and the optimal parameter values are obtained through the iterative updating process of position and speed. Aiming at the acquired obstacle avoidance trajectory path points, the convex optimization algorithm is used to construct a non-convex optimal control model that meets the requirements of energy optimization, and is rooted in the concave-convex process, so that the control model’s objective function and inequality constraint are both convex, while the formula constraint is affine. By transforming the control model into a convex optimization problem, it aligns with the energy optimization requirements. The sequential convex optimization framework is employed to solve this problem, enabling the optimization of the UAV’s trajectory for obstacle avoidance. Experimental outcomes demonstrate that this approach effectively captures the coordinate details of obstacles, navigates through various dense obstacle scenarios, and simultaneously guarantees an energy-efficient path to the target destination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234完成签到 ,获得积分10
刚刚
Splaink完成签到 ,获得积分10
刚刚
fairland发布了新的文献求助10
1秒前
纯真的雨完成签到 ,获得积分10
1秒前
浅欢完成签到 ,获得积分10
1秒前
平常山柏完成签到 ,获得积分10
2秒前
心子吖完成签到,获得积分10
4秒前
pinklay完成签到 ,获得积分10
5秒前
5秒前
9秒前
王QQ完成签到 ,获得积分10
9秒前
9秒前
grnn完成签到,获得积分10
10秒前
爆米花应助阳光采纳,获得10
11秒前
pjh发布了新的文献求助10
12秒前
归海一刀发布了新的文献求助30
13秒前
刻苦小鸭子完成签到,获得积分10
13秒前
凶狠的猎豹完成签到,获得积分10
14秒前
诸葛语琴发布了新的文献求助10
14秒前
ping完成签到 ,获得积分10
18秒前
思源应助pjh采纳,获得10
18秒前
诸葛语琴完成签到,获得积分10
20秒前
郑州应助科研通管家采纳,获得10
24秒前
郑州应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
Wonder完成签到,获得积分10
24秒前
郑州应助科研通管家采纳,获得10
24秒前
花生豆发布了新的文献求助10
24秒前
诚心的彩虹完成签到,获得积分20
25秒前
pjh完成签到,获得积分10
25秒前
26秒前
传奇3应助celine采纳,获得10
28秒前
研友_VZG7GZ应助高强采纳,获得10
28秒前
28秒前
28秒前
30秒前
克泷完成签到 ,获得积分10
30秒前
勤劳芷云发布了新的文献求助10
31秒前
花生豆完成签到,获得积分10
32秒前
klyy516发布了新的文献求助10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526413
求助须知:如何正确求助?哪些是违规求助? 3106815
关于积分的说明 9281607
捐赠科研通 2804333
什么是DOI,文献DOI怎么找? 1539426
邀请新用户注册赠送积分活动 716552
科研通“疑难数据库(出版商)”最低求助积分说明 709520