Hydrophobic Ionic Liquid Engineering for Reversing CO Intermediate Configuration toward Ampere-Level CO2 Electroreduction to C2+ Products

化学 颠倒 离子液体 电化学 离子键合 安培 无机化学 物理化学 热力学 电极 离子 有机化学 催化作用 电流(流体) 机械工程 物理 工程类
作者
Runhua Chen,Qiong Wu,Juncheng Zhu,Shumin Wang,Zexun Hu,Jun Hu,Junfa Zhu,Hongjun Zhang,Bangjiao Ye,Yongfu Sun,Yi Xie
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c18508
摘要

Hydrophobic ionic liquid (HIL) engineering on the catalyst surface represents a simple yet potent direction for optimizing the CO2 electroreduction performance. However, the pivotal role of HIL engineering at an industrial current density is still ambiguous due to limited and conflicting research findings. Herein, HIL-engineered oxide-derived Cu porous nanoparticles with electron-delocalized groups and a specific ultramicropore structure are first constructed to facilitate CO2-to-C2+ electroreduction at ampere-level current densities. The uniformly decorated HIL is innovatively demonstrated by positron annihilation lifetime spectroscopy, which offers unparalleled advantages in ultramicropore characterization. Bader charge-dependent performance analyses and theoretical calculations disclose that the N atoms in the HIL lower the adsorption energy of CO on the atop site from -0.38 to -1.42 eV through electron donation, which inverts the most stable adsorption site and favors the energy-efficient dimerization of atop-bound CO. Operando Raman spectra and in situ attenuated total reflection-surface enhanced infrared absorption spectroscopy indicate that the adhered HIL increases *CO coverage and alters the *CO adsorption configuration to an atop-bound state with an abundant high-frequency band. Furthermore, staircase potential electrochemical impedance spectroscopy unravels the specific arrangement structure of HIL enlarges the electrochemical surface charge by about 1.5 times, thereby accelerating CO2 electroreduction. As a result, the HIL-engineered oxide-derived Cu porous nanoparticles achieve a prominent C2+ productivity with a Faradaic efficiency of 85.1% and a formation rate up to 2512 μmol h-1 cm-2, outperforming most reported Cu-based electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xj发布了新的文献求助10
1秒前
小吴完成签到,获得积分20
2秒前
2秒前
BBQ发布了新的文献求助10
6秒前
超级大饼发布了新的文献求助10
6秒前
英俊延恶发布了新的文献求助50
6秒前
星海妖魂完成签到,获得积分20
7秒前
OliverW完成签到,获得积分10
7秒前
专注寻菱发布了新的文献求助10
7秒前
火星上的菲鹰应助GRDGRDGRD采纳,获得10
8秒前
8秒前
8秒前
9秒前
科研通AI5应助moon采纳,获得10
9秒前
迟大猫应助123yaoyao采纳,获得10
9秒前
科研通AI5应助赵钰采纳,获得10
10秒前
10秒前
11秒前
11秒前
12秒前
linwenfengcool完成签到,获得积分10
12秒前
12秒前
13秒前
星辰大海应助微微采纳,获得10
13秒前
完美世界应助糟糕的铁锤采纳,获得30
13秒前
领导范儿应助英俊延恶采纳,获得50
14秒前
14秒前
周周发布了新的文献求助10
14秒前
坚强铸海发布了新的文献求助10
15秒前
Owen应助天南采纳,获得10
15秒前
15秒前
15秒前
16秒前
细心的山槐完成签到,获得积分10
16秒前
大个应助奋斗映寒采纳,获得10
17秒前
asd发布了新的文献求助10
17秒前
Bzq完成签到,获得积分10
17秒前
18秒前
科研通AI5应助小陈采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515448
求助须知:如何正确求助?哪些是违规求助? 3097719
关于积分的说明 9236719
捐赠科研通 2792737
什么是DOI,文献DOI怎么找? 1532622
邀请新用户注册赠送积分活动 712201
科研通“疑难数据库(出版商)”最低求助积分说明 707160